From general AI to custom AI: the effects of generative conversational AI’s cognitive and emotional conversational skills on user's guidance

计算机科学 生成语法 认知 个性化 情商 人工智能 结构方程建模 用户参与度 独创性 认知心理学 心理学 社会心理学 创造力 万维网 机器学习 神经科学
作者
Kun Wang,Zhao Pan,Yaobin Lu
出处
期刊:Kybernetes [Emerald Publishing Limited]
被引量:3
标识
DOI:10.1108/k-04-2024-0894
摘要

Purpose Generative conversational artificial intelligence (AI) demonstrates powerful conversational skills for general tasks but requires customization for specific tasks. The quality of a custom generative conversational AI highly depends on users’ guidance, which has not been studied by previous research. This study uses social exchange theory to examine how generative conversational AI’s cognitive and emotional conversational skills affect users’ guidance through different types of user engagement, and how these effects are moderated by users’ relationship norm orientation. Design/methodology/approach Based on data collected from 589 actual users using a two-wave survey, this study employed partial least squares structural equation modeling to analyze the proposed hypotheses. Additional analyses were performed to test the robustness of our research model and results. Findings The results reveal that cognitive conversational skills (i.e. tailored and creative responses) positively affected cognitive and emotional engagement. However, understanding emotion influenced cognitive engagement but not emotional engagement, and empathic concern influenced emotional engagement but not cognitive engagement. In addition, cognitive and emotional engagement positively affected users’ guidance. Further, relationship norm orientation moderated some of these effects such that the impact of user engagement on user guidance was stronger for communal-oriented users than for exchange-oriented users. Originality/value First, drawing on social exchange theory, this study empirically examined the drivers of users’ guidance in the context of generative conversational AI, which may enrich the user guidance literature. Second, this study revealed the moderating role of relationship norm orientation in influencing the effect of user engagement on users’ guidance. The findings will deepen our understanding of users’ guidance. Third, the findings provide practical guidelines for designing generative conversational AI from a general AI to a custom AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LSxtd发布了新的文献求助10
1秒前
Raisin完成签到 ,获得积分10
2秒前
朻安完成签到,获得积分10
2秒前
4秒前
5秒前
老实皮卡丘完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
zxa12339776发布了新的文献求助10
8秒前
9秒前
科研能发布了新的文献求助10
10秒前
Mito2009发布了新的文献求助10
11秒前
李键刚完成签到,获得积分10
12秒前
江觅松发布了新的文献求助10
13秒前
14秒前
珂伟完成签到,获得积分0
15秒前
wjm完成签到 ,获得积分10
17秒前
ybdx完成签到,获得积分10
17秒前
MFNM发布了新的文献求助10
19秒前
Mito2009完成签到,获得积分10
19秒前
Jasper应助专一的纸飞机采纳,获得10
20秒前
21秒前
江觅松完成签到,获得积分10
23秒前
23秒前
潮鸣完成签到 ,获得积分10
23秒前
LSxtd完成签到,获得积分10
23秒前
科研能完成签到,获得积分10
25秒前
丰富的小不完成签到,获得积分10
26秒前
曦子曦子完成签到,获得积分10
27秒前
科研通AI2S应助Kannan采纳,获得10
29秒前
29秒前
Murphy完成签到,获得积分10
29秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
wangzhen完成签到 ,获得积分10
33秒前
33秒前
橘涂完成签到 ,获得积分10
34秒前
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866287
求助须知:如何正确求助?哪些是违规求助? 3408852
关于积分的说明 10660212
捐赠科研通 3132964
什么是DOI,文献DOI怎么找? 1727899
邀请新用户注册赠送积分活动 832533
科研通“疑难数据库(出版商)”最低求助积分说明 780316