Parameter identification of PV solar cells and modules using bio dynamics grasshopper optimization algorithm

鉴定(生物学) 光伏系统 蚱蜢 优化算法 计算机科学 生物系统 算法 数学优化 工程类 数学 生物 电气工程 植物 生态学
作者
Mostafa Jabari,Amin Rad,Morteza Azimi Nasab,Mohammad Zand,Sanjeevikumar Padmanaban,S. M. Muyeen,Josep M. Guerrero
出处
期刊:Iet Generation Transmission & Distribution [Institution of Engineering and Technology]
卷期号:18 (21): 3314-3338 被引量:11
标识
DOI:10.1049/gtd2.13279
摘要

The escalating global population and energy demands underscore the critical role of renewable energy sources, particularly solar power, in mitigating environmental degradation caused by traditional fossil fuels. This paper emphasizes the advantages of solar energy, especially photovoltaic (PV) systems, which have become pivotal in hybrid energy systems. However, accurate modelling and identification of PV cell parameters pose challenges, prompting the adoption of meta-heuristic optimization algorithms. This work explores the limitations of existing algorithms and introduces a novel approach, the bio-dynamics grasshopper optimization algorithm (BDGOA). The BDGOA addresses deficiencies in both exploration and exploitation phases, exhibiting exceptional convergence speed and efficiency. The algorithm's simplicity, achieved through the implementation of an elimination phase and controlled search space, enhances its performance without intricate calculations. The study evaluates the BDGOA by applying it to identify unknown parameters of five solar modules. The algorithm's effectiveness is demonstrated through the extraction of parameters for RTC France, PWP201, SM55, KC200GT, and SW255 models, validated against experimental data under diverse conditions. The paper concludes with insights into the impact of radiation and temperature on module parameters. The subsequent sections of the paper delve into the intricacies of the PV cell and module model, articulate the formulation of the proposed algorithm, present simulations, and analyse the obtained results. The BDGOA emerges as a promising solution, overcoming the limitations of existing algorithms and contributing significantly to the advancement of accurate and efficient PV cell parameter identification, thereby propelling progress towards a sustainable energy future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AOTUMAN完成签到,获得积分10
刚刚
我来了完成签到,获得积分10
1秒前
1秒前
大爱仙尊发布了新的文献求助10
2秒前
通通完成签到,获得积分10
3秒前
3秒前
大福发布了新的文献求助10
4秒前
传感发布了新的文献求助10
4秒前
所所应助Lisa采纳,获得10
5秒前
大蘑菇炒小蘑菇完成签到,获得积分10
7秒前
oneonlycrown完成签到,获得积分10
9秒前
su完成签到,获得积分10
9秒前
zmk发布了新的文献求助50
10秒前
汉堡包应助矮小的猎豹采纳,获得10
10秒前
10秒前
三火完成签到,获得积分10
10秒前
Lqiqiqi完成签到,获得积分10
11秒前
HughWang完成签到,获得积分10
12秒前
jw完成签到,获得积分10
14秒前
gexzygg应助大爱仙尊采纳,获得10
15秒前
water应助大爱仙尊采纳,获得10
15秒前
豚踢兔发布了新的文献求助10
15秒前
15秒前
15秒前
爆米花应助大爱仙尊采纳,获得10
15秒前
NexusExplorer应助大爱仙尊采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
研友_VZG7GZ应助九宫格采纳,获得10
19秒前
CipherSage应助Haibrar采纳,获得20
21秒前
22秒前
完美世界应助大爱仙尊采纳,获得10
22秒前
酷波er应助大爱仙尊采纳,获得10
22秒前
汉堡包应助大爱仙尊采纳,获得10
22秒前
zmk关闭了zmk文献求助
22秒前
上官若男应助大爱仙尊采纳,获得10
22秒前
22秒前
乐乐应助大爱仙尊采纳,获得10
22秒前
SciGPT应助大爱仙尊采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4267592
求助须知:如何正确求助?哪些是违规求助? 3798977
关于积分的说明 11907932
捐赠科研通 3445644
什么是DOI,文献DOI怎么找? 1890403
邀请新用户注册赠送积分活动 941151
科研通“疑难数据库(出版商)”最低求助积分说明 845472