Multi-omics based artificial intelligence for cancer research

组学 数据科学 个性化医疗 基因组学 协调 物候学 表观遗传学 蛋白质组学 计算机科学 生物 计算生物学 生物信息学 基因组 生物化学 物理 基因表达 声学 DNA甲基化 基因
作者
Lusheng Li,Mengtao Sun,Jieqiong Wang,Shibiao Wan
出处
期刊:Advances in Cancer Research [Elsevier BV]
卷期号:: 303-356 被引量:4
标识
DOI:10.1016/bs.acr.2024.06.005
摘要

With significant advancements of next generation sequencing technologies, large amounts of multi-omics data, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have been accumulated, offering an unprecedented opportunity to explore the heterogeneity and complexity of cancer across various molecular levels and scales. One of the promising aspects of multi-omics lies in its capacity to offer a holistic view of the biological networks and pathways underpinning cancer, facilitating a deeper understanding of its development, progression, and response to treatment. However, the exponential growth of data generated by multi-omics studies present significant analytical challenges. Processing, analyzing, integrating, and interpreting these multi-omics datasets to extract meaningful insights is an ambitious task that stands at the forefront of current cancer research. The application of artificial intelligence (AI) has emerged as a powerful solution to these challenges, demonstrating exceptional capabilities in deciphering complex patterns and extracting valuable information from large-scale, intricate omics datasets. This review delves into the synergy of AI and multi-omics, highlighting its revolutionary impact on oncology. We dissect how this confluence is reshaping the landscape of cancer research and clinical practice, particularly in the realms of early detection, diagnosis, prognosis, treatment and pathology. Additionally, we elaborate the latest AI methods for multi-omics integration to provide a comprehensive insight of the complex biological mechanisms and inherent heterogeneity of cancer. Finally, we discuss the current challenges of data harmonization, algorithm interpretability, and ethical considerations. Addressing these challenges necessitates a multidisciplinary collaboration, paving the promising way for more precise, personalized, and effective treatments for cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助笑点低中心采纳,获得10
1秒前
亦沐黎完成签到,获得积分10
2秒前
深情海秋完成签到,获得积分10
2秒前
默默无闻完成签到,获得积分10
3秒前
半糖完成签到,获得积分10
3秒前
bigpluto完成签到,获得积分10
3秒前
华仔应助33采纳,获得10
3秒前
3秒前
妮妮发布了新的文献求助10
4秒前
xzx完成签到 ,获得积分10
4秒前
疯狂的绮山完成签到,获得积分10
6秒前
夏天再见完成签到,获得积分10
6秒前
yaki完成签到,获得积分10
7秒前
Tokgo完成签到,获得积分10
9秒前
星辰大海应助林洛沁采纳,获得10
9秒前
SY完成签到,获得积分20
9秒前
Tomin完成签到,获得积分10
10秒前
11秒前
11秒前
zpbb完成签到,获得积分10
12秒前
鼠标划到头像完成签到,获得积分10
13秒前
哆啦A梦完成签到,获得积分10
13秒前
王青文发布了新的文献求助10
13秒前
高贵的思天完成签到,获得积分10
13秒前
maz123456完成签到,获得积分10
15秒前
梦月完成签到,获得积分10
15秒前
霍红旭发布了新的文献求助10
15秒前
zxp完成签到,获得积分10
15秒前
感性的俊驰完成签到 ,获得积分10
15秒前
zzx完成签到,获得积分10
15秒前
XiaoBai_xh关注了科研通微信公众号
16秒前
科研通AI2S应助fuguier采纳,获得10
16秒前
zhaolee完成签到 ,获得积分10
16秒前
17秒前
小二郎应助AHR采纳,获得10
19秒前
华仔应助AHR采纳,获得10
19秒前
小蘑菇应助AHR采纳,获得10
19秒前
灿烂完成签到,获得积分10
19秒前
余琳发布了新的文献求助10
20秒前
可爱的函函应助Jiang采纳,获得10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642