Multi-omics based artificial intelligence for cancer research

组学 数据科学 个性化医疗 基因组学 协调 物候学 表观遗传学 蛋白质组学 计算机科学 生物 计算生物学 生物信息学 基因组 生物化学 物理 基因表达 声学 DNA甲基化 基因
作者
Lusheng Li,Mengtao Sun,Jieqiong Wang,Shibiao Wan
出处
期刊:Advances in Cancer Research [Elsevier BV]
卷期号:: 303-356 被引量:4
标识
DOI:10.1016/bs.acr.2024.06.005
摘要

With significant advancements of next generation sequencing technologies, large amounts of multi-omics data, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have been accumulated, offering an unprecedented opportunity to explore the heterogeneity and complexity of cancer across various molecular levels and scales. One of the promising aspects of multi-omics lies in its capacity to offer a holistic view of the biological networks and pathways underpinning cancer, facilitating a deeper understanding of its development, progression, and response to treatment. However, the exponential growth of data generated by multi-omics studies present significant analytical challenges. Processing, analyzing, integrating, and interpreting these multi-omics datasets to extract meaningful insights is an ambitious task that stands at the forefront of current cancer research. The application of artificial intelligence (AI) has emerged as a powerful solution to these challenges, demonstrating exceptional capabilities in deciphering complex patterns and extracting valuable information from large-scale, intricate omics datasets. This review delves into the synergy of AI and multi-omics, highlighting its revolutionary impact on oncology. We dissect how this confluence is reshaping the landscape of cancer research and clinical practice, particularly in the realms of early detection, diagnosis, prognosis, treatment and pathology. Additionally, we elaborate the latest AI methods for multi-omics integration to provide a comprehensive insight of the complex biological mechanisms and inherent heterogeneity of cancer. Finally, we discuss the current challenges of data harmonization, algorithm interpretability, and ethical considerations. Addressing these challenges necessitates a multidisciplinary collaboration, paving the promising way for more precise, personalized, and effective treatments for cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSNN完成签到,获得积分10
2秒前
2秒前
孙宏宇完成签到,获得积分10
3秒前
3秒前
柏达完成签到,获得积分10
3秒前
百宝完成签到,获得积分10
4秒前
4秒前
Seven发布了新的文献求助10
5秒前
不安的未来完成签到,获得积分10
5秒前
5秒前
科目三应助猪猪hero采纳,获得10
5秒前
吴智健完成签到,获得积分20
6秒前
Lamis发布了新的文献求助10
6秒前
6秒前
Lucas应助名人世界采纳,获得10
7秒前
7秒前
优雅的涵瑶完成签到,获得积分10
7秒前
Kensomely发布了新的文献求助10
7秒前
8秒前
12345发布了新的文献求助30
8秒前
蓝颜完成签到,获得积分10
10秒前
英俊的铭应助微笑的画笔采纳,获得10
10秒前
Seven完成签到,获得积分10
10秒前
Hello应助小肚肚采纳,获得10
11秒前
12秒前
江鳞发布了新的文献求助30
12秒前
华仔应助朝菌采纳,获得10
12秒前
zhangwj226完成签到,获得积分10
12秒前
kiki发布了新的文献求助10
13秒前
wuwu发布了新的文献求助100
13秒前
13秒前
ren完成签到 ,获得积分10
14秒前
devil完成签到,获得积分10
14秒前
无月完成签到,获得积分10
14秒前
Orange应助追风hyzhang采纳,获得10
14秒前
小蘑菇应助Kensomely采纳,获得10
16秒前
17秒前
17秒前
xiao123789完成签到,获得积分10
18秒前
大模型应助qx采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Handbook on Families and Education 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Artificial Intelligence for Drug Discovery and Development 200
Sensory Individuals 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4349207
求助须知:如何正确求助?哪些是违规求助? 3854714
关于积分的说明 12030845
捐赠科研通 3496608
什么是DOI,文献DOI怎么找? 1918614
邀请新用户注册赠送积分活动 961261
科研通“疑难数据库(出版商)”最低求助积分说明 861019