Predicting states of elevated negative affect in adolescents from smartphone sensors: a novel personalized machine learning approach

悲伤 愤怒 情感(语言学) 焦虑 心理干预 智能手机应用 心理学 电话 智能手机 临床心理学 计算机科学 精神科 多媒体 沟通 电信 哲学 语言学
作者
Boyu Ren,Emma G. Balkind,Brianna Pastro,E. Israel,Diego A. Pizzagalli,Habiballah Rahimi-Eichi,Justin T. Baker,Christian A. Webb
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (11): 5146-5154 被引量:30
标识
DOI:10.1017/s0033291722002161
摘要

Abstract Background Adolescence is characterized by profound change, including increases in negative emotions. Approximately 84% of American adolescents own a smartphone, which can continuously and unobtrusively track variables potentially predictive of heightened negative emotions (e.g. activity levels, location, pattern of phone usage). The extent to which built-in smartphone sensors can reliably predict states of elevated negative affect in adolescents is an open question. Methods Adolescent participants ( n = 22; ages 13–18) with low to high levels of depressive symptoms were followed for 15 weeks using a combination of ecological momentary assessments (EMAs) and continuously collected passive smartphone sensor data. EMAs probed negative emotional states (i.e. anger, sadness and anxiety) 2–3 times per day every other week throughout the study (total: 1145 EMA measurements). Smartphone accelerometer, location and device state data were collected to derive 14 discrete estimates of behavior, including activity level, percentage of time spent at home, sleep onset and duration, and phone usage. Results A personalized ensemble machine learning model derived from smartphone sensor data outperformed other statistical approaches (e.g. linear mixed model) and predicted states of elevated anger and anxiety with acceptable discrimination ability (area under the curve (AUC) = 74% and 71%, respectively), but demonstrated more modest discrimination ability for predicting states of high sadness (AUC = 66%). Conclusions To the extent that smartphone data could provide reasonably accurate real-time predictions of states of high negative affect in teens, brief ‘just-in-time’ interventions could be immediately deployed via smartphone notifications or mental health apps to alleviate these states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yangguangwei完成签到 ,获得积分10
1秒前
2秒前
2秒前
zhou发布了新的文献求助30
2秒前
深情安青应助wulala采纳,获得10
3秒前
Linxinxin完成签到,获得积分10
3秒前
smalldesk发布了新的文献求助10
3秒前
yun关闭了yun文献求助
3秒前
爆米花应助小鱼儿采纳,获得10
3秒前
3秒前
Yy发布了新的文献求助10
4秒前
顾矜应助nnnn采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
彭于晏发布了新的文献求助10
6秒前
6秒前
华西胖旭发布了新的文献求助10
6秒前
6秒前
花小北完成签到 ,获得积分10
7秒前
7秒前
8秒前
anny2022发布了新的文献求助10
8秒前
8秒前
yrheong完成签到,获得积分10
8秒前
blank12完成签到,获得积分10
8秒前
lr完成签到,获得积分10
8秒前
yu完成签到,获得积分10
8秒前
9秒前
机灵铭完成签到 ,获得积分10
9秒前
茴茴发布了新的文献求助10
10秒前
奋斗初南发布了新的文献求助30
11秒前
bkagyin应助gecumk采纳,获得10
11秒前
糕糕发布了新的文献求助10
11秒前
11秒前
lacey发布了新的文献求助10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341667
求助须知:如何正确求助?哪些是违规求助? 4477790
关于积分的说明 13936857
捐赠科研通 4373983
什么是DOI,文献DOI怎么找? 2403246
邀请新用户注册赠送积分活动 1396065
关于科研通互助平台的介绍 1368096