肝细胞癌
癌症研究
转化生长因子
生物
车站3
信号转导
医学
内科学
细胞生物学
作者
Zhigao Hu,Shun Zhang,Yubing Chen,Wei Cao,Zhiyang Zhou,Jiang‐Nan Zhang,Ge Gao,Songqing He
出处
期刊:Life Sciences
[Elsevier BV]
日期:2020-06-30
卷期号:258: 118029-118029
被引量:14
标识
DOI:10.1016/j.lfs.2020.118029
摘要
Hepatitis B virus (HBV) infection causes liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development, but the underlying mechanism remains poorly understood. This study aimed to investigate the roles and molecular mechanisms of Dystrobrevin-α (DTNA) in HBV-induced liver cirrhosis and HCC pathogenesis.DTNA expression was bioinformatically analyzed using the GEO database. DTNA expression was silenced by transfection with shRNAs. Cell proliferation and apoptosis were evaluated by MTT and flow cytometry respectively. The expression of genes in mRNA or protein levels was assessed by quantitative RT-PCR and western blotting. The interaction between proteins was predicted with the String and GCBI online softwares, and then confirmed by co-immunoprecipitation. Animal models were established by injecting nude mice with AVV8-HBV1.3 vector.Bioinformatics analysis showed a significantly increase in DTNA expression in HBV-positive liver cirrhosis and HCC patients. HBV infection caused a significantly increase in DTNA expression in HCC cell lines HepAD38 and HepG2.2.15. DTNA knockdown suppressed proliferation and promoted apoptosis of HBV-infected HepAD38 and HepG2.2.15 cells. HBV induced elevated expression of fibrosis-related genes Collagen II and TGFβ1 in LO-2 cells, which were suppressed by DTNA knockdown. DTNA directly binded with STAT3 protein to promote STAT3 phosphorylation and TGFβ1 expression and repress P53 expression in HBV-infected HepAD38 and LO-2 cells. The DTNA/STAT3 axis was activated during HBV-induced fibrosis, cirrhosis and HCC development in mouse model.DTNA binds with and further activates STAT3 to induce TGFβ1 expression and repress P53 expression, thus promoting HBV-induced liver fibrosis, cirrhosis and hepatocellular carcinoma progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI