A Novel Approach to the Unsupervised Extraction of Reliable Training Samples From Thematic Products

计算机科学 专题地图 土地覆盖 背景(考古学) 领域(数学分析) 集合(抽象数据类型) 数据挖掘 人工智能 多边形(计算机图形学) 数据集 模式识别(心理学) 土地利用 数学 地图学 工程类 地理 数学分析 古生物学 程序设计语言 土木工程 帧(网络) 生物 电信
作者
Claudia Paris,Lorenzo Bruzzone
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (3): 1930-1948 被引量:25
标识
DOI:10.1109/tgrs.2020.3001004
摘要

Supervised classification algorithms require a sufficiently large set of representative training samples to generate accurate land-cover maps. Collecting reference data is difficult, expensive, and unfeasible at the large scale. To solve this problem, this article introduces a novel approach that aims to extract reliable labeled data from existing thematic products. Although these products represent a potentially useful information source, their use is not straightforward. They are not completely reliable since they may present classification errors. They are typically aggregated at polygon level, where polygons do not necessarily correspond to homogeneous areas. Finally, usually, there is a semantic gap between map legends and remote sensing (RS) data. In this context, we propose an approach that aims to: 1) perform a domain understanding to detect the discrepancies between the thematic map domain and the RS data domain; 2) use RS data contemporary to the map to decompose the thematic product from the semantic and spatial viewpoints; and 3) extract a database of informative and reliable training samples. The database of weak labeled units is used for training an ensemble of classifiers on recent data whose results are then combined in a majority voting rule. Two sets of experimental results obtained on MS images by extracting training samples from a crop type map and the 2018 Corine Land Cover (CLC) map, respectively, confirm the effectiveness of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_7ZebY8完成签到,获得积分10
2秒前
2秒前
2秒前
LHT完成签到,获得积分10
2秒前
2秒前
小鞠发布了新的文献求助10
2秒前
2秒前
达达发布了新的文献求助10
2秒前
2秒前
3秒前
大王发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
wwz应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
5秒前
打打应助甜蜜花采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441179
求助须知:如何正确求助?哪些是违规求助? 4552035
关于积分的说明 14233318
捐赠科研通 4473012
什么是DOI,文献DOI怎么找? 2451153
邀请新用户注册赠送积分活动 1442102
关于科研通互助平台的介绍 1418298