准粒子
纳米
物理
飞秒
等离子体子
材料科学
纳米技术
光电子学
凝聚态物理
量子力学
光学
激光器
超导电性
作者
Yanan Dai,Zhikang Zhou,Atreyie Ghosh,Roger S. K. Mong,Atsushi Kubo,Chen‐Bin Huang,Hrvoje Petek
出处
期刊:Nature
[Nature Portfolio]
日期:2020-12-23
卷期号:588 (7839): 616-619
被引量:193
标识
DOI:10.1038/s41586-020-3030-1
摘要
At the interface of classical and quantum physics, the Maxwell and Schrodinger equations describe how optical fields drive and control electronic phenomena to enable lightwave electronics at terahertz or petahertz frequencies and on ultrasmall scales1-5. The electric field of light striking a metal interacts with electrons and generates light-matter quasiparticles, such as excitons6 or plasmons7, on an attosecond timescale. Here we create and image a quasiparticle of topological plasmonic spin texture in a structured silver film. The spin angular momentum components of linearly polarized light interacting with an Archimedean coupling structure with a designed geometric phase generate plasmonic waves with different orbital angular momenta. These plasmonic fields undergo spin-orbit interaction and their superposition generates an array of plasmonic vortices. Three of these vortices can form spin textures that carry non-trivial topological charge8 resembling magnetic meron quasiparticles9. These spin textures are localized within a half-wavelength of light, and exist on the timescale of the plasmonic field. We use ultrafast nonlinear coherent photoelectron microscopy to generate attosecond videos of the spatial evolution of the vortex fields; electromagnetic simulations and analytic theory confirm the presence of plasmonic meron quasiparticles. The quasiparticles form a chiral field, which breaks the time-reversal symmetry on a nanometre spatial scale and a 20-femtosecond timescale (the 'nano-femto scale'). This transient creation of non-trivial spin angular momentum topology pertains to cosmological structure creation and topological phase transitions in quantum matter10-12, and may transduce quantum information on the nano-femto scale13,14.
科研通智能强力驱动
Strongly Powered by AbleSci AI