亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review on Convolutional Neural Networks (CNN) in vegetation remote sensing

计算机科学 卷积神经网络 深度学习 植被(病理学) 人工智能 遥感 分割 灵活性(工程) 空间分析 模块化(生物学) 像素 遥感应用 机器学习 高光谱成像 地理 医学 病理 统计 数学 生物 遗传学
作者
Teja Kattenborn,Jens Leitloff,Felix Schiefer,Stefan Hinz
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:173: 24-49 被引量:1482
标识
DOI:10.1016/j.isprsjprs.2020.12.010
摘要

Identifying and characterizing vascular plants in time and space is required in various disciplines, e.g. in forestry, conservation and agriculture. Remote sensing emerged as a key technology revealing both spatial and temporal vegetation patterns. Harnessing the ever growing streams of remote sensing data for the increasing demands on vegetation assessments and monitoring requires efficient, accurate and flexible methods for data analysis. In this respect, the use of deep learning methods is trend-setting, enabling high predictive accuracy, while learning the relevant data features independently in an end-to-end fashion. Very recently, a series of studies have demonstrated that the deep learning method of Convolutional Neural Networks (CNN) is very effective to represent spatial patterns enabling to extract a wide array of vegetation properties from remote sensing imagery. This review introduces the principles of CNN and distils why they are particularly suitable for vegetation remote sensing. The main part synthesizes current trends and developments, including considerations about spectral resolution, spatial grain, different sensors types, modes of reference data generation, sources of existing reference data, as well as CNN approaches and architectures. The literature review showed that CNN can be applied to various problems, including the detection of individual plants or the pixel-wise segmentation of vegetation classes, while numerous studies have evinced that CNN outperform shallow machine learning methods. Several studies suggest that the ability of CNN to exploit spatial patterns particularly facilitates the value of very high spatial resolution data. The modularity in the common deep learning frameworks allows a high flexibility for the adaptation of architectures, whereby especially multi-modal or multi-temporal applications can benefit. An increasing availability of techniques for visualizing features learned by CNNs will not only contribute to interpret but to learn from such models and improve our understanding of remotely sensed signals of vegetation. Although CNN has not been around for long, it seems obvious that they will usher in a new era of vegetation remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
liang发布了新的文献求助10
7秒前
情怀应助liang采纳,获得10
18秒前
Kevin完成签到,获得积分10
23秒前
28秒前
无心烛发布了新的文献求助30
32秒前
Fortune完成签到,获得积分10
34秒前
50秒前
走啊走应助科研通管家采纳,获得10
1分钟前
走啊走应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助无心烛采纳,获得10
1分钟前
2分钟前
无心烛发布了新的文献求助10
2分钟前
2分钟前
liang发布了新的文献求助10
2分钟前
2分钟前
所所应助liang采纳,获得10
2分钟前
Beth完成签到,获得积分10
2分钟前
无心烛发布了新的文献求助10
2分钟前
走啊走应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
仓颉发布了新的文献求助10
3分钟前
SciGPT应助仓颉采纳,获得10
3分钟前
3分钟前
科目三应助无心烛采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
无心烛发布了新的文献求助30
4分钟前
4分钟前
香蕉觅云应助科研通管家采纳,获得50
5分钟前
5分钟前
无心烛发布了新的文献求助10
5分钟前
Tree_QD完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161530
求助须知:如何正确求助?哪些是违规求助? 4355002
关于积分的说明 13559124
捐赠科研通 4199716
什么是DOI,文献DOI怎么找? 2303266
邀请新用户注册赠送积分活动 1303253
关于科研通互助平台的介绍 1249101