Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma

放射基因组学 医学 队列 无线电技术 深度学习 卷积神经网络 接收机工作特性 放化疗 人工智能 放射科 食管鳞状细胞癌 肿瘤科 机器学习 内科学 放射治疗 计算机科学
作者
Yihuai Hu,Chenyi Xie,Hong Yang,Joshua W. K. Ho,Jing Wen,Lujun Han,Ka-On Lam,Yhi Wong,Simon Law,K.W. Chiu,Varut Vardhanabhuti,Jianhua Fu
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:154: 6-13 被引量:112
标识
DOI:10.1016/j.radonc.2020.09.014
摘要

Background Deep learning is promising to predict treatment response. We aimed to evaluate and validate the predictive performance of the CT-based model using deep learning features for predicting pathologic complete response to neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC). Materials and methods Patients were retrospectively enrolled between April 2007 and December 2018 from two institutions. We extracted deep learning features of six pre-trained convolutional neural networks, respectively, from pretreatment CT images in the training cohort (n = 161). Support vector machine was adopted as the classifier. Validation was performed in an external testing cohort (n = 70). We assessed the performance using the area under the receiver operating characteristics curve (AUC) and selected an optimal model, which was compared with a radiomics model developed from the training cohort. A clinical model consisting of clinical factors only was also built for baseline comparison. We further conducted a radiogenomics analysis using gene expression profiles to reveal underlying biology associated with radiological prediction. Results The optimal model with features extracted from ResNet50 achieved an AUC and accuracy of 0.805 (95% CI, 0.696–0.913) and 77.1% (65.6%-86.3%) in the testing cohort, compared with 0.725 (0.605–0.846)) and 67.1% (54.9%-77.9%) for the radiomics model. All the radiological models showed better predictive performance than the clinical model. Radiogenomics analysis suggested a potential association mainly with WNT signaling pathway and tumor microenvironment. Conclusions The novel and noninvasive deep learning approach could provide efficient and accurate prediction of treatment response to nCRT in ESCC, and benefit clinical decision making of therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北斗星司关注了科研通微信公众号
1秒前
kx发布了新的文献求助10
1秒前
星辰大海应助xiaohu采纳,获得10
2秒前
上官若男应助认真乐安采纳,获得10
3秒前
又饿啦留下了新的社区评论
3秒前
zyzhnu完成签到,获得积分10
4秒前
LinYX发布了新的文献求助10
4秒前
4秒前
5秒前
星辰大海应助轻nxwjn采纳,获得10
5秒前
demoestar完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
polarisier完成签到,获得积分10
5秒前
6秒前
调皮的海之完成签到,获得积分10
6秒前
7秒前
称心的映容完成签到 ,获得积分10
7秒前
斯文的苑博完成签到,获得积分10
7秒前
1851611453完成签到 ,获得积分10
7秒前
健康的之云完成签到,获得积分20
7秒前
无花果应助芜湖采纳,获得10
7秒前
8秒前
这只蜗牛爬的有点慢完成签到,获得积分10
9秒前
风趣的苑博完成签到,获得积分10
9秒前
老实晓丝完成签到 ,获得积分10
9秒前
123abc发布了新的文献求助10
9秒前
9秒前
天真涵双发布了新的文献求助10
9秒前
小杭76发布了新的文献求助10
10秒前
浮游应助慕容松采纳,获得10
10秒前
方旭明发布了新的文献求助10
11秒前
坚定的苑睐完成签到,获得积分10
12秒前
12秒前
Akim应助psy采纳,获得10
12秒前
曲奇饼干发布了新的文献求助10
13秒前
JamesPei应助果实采纳,获得10
14秒前
泡芙应助果实采纳,获得10
14秒前
科研通AI2S应助果实采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472618
求助须知:如何正确求助?哪些是违规求助? 4574892
关于积分的说明 14348791
捐赠科研通 4502206
什么是DOI,文献DOI怎么找? 2467049
邀请新用户注册赠送积分活动 1454960
关于科研通互助平台的介绍 1429235