Exercise recommendation based on knowledge concept prediction

计算机科学 新颖性 基线(sea) 协同过滤 机器学习 人工智能 追踪 推荐系统 滤波器(信号处理) 心理学 计算机视觉 社会心理学 海洋学 操作系统 地质学
作者
Zhengyang Wu,Ming Li,Yong Tang,Qingyu Liang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:210: 106481-106481 被引量:48
标识
DOI:10.1016/j.knosys.2020.106481
摘要

Good recommendation for difficulty exercises can effectively help to point the students/users in the right direction, and potentially empower their learning interests. It is however challenging to select the exercises with reasonable difficulty for students as they have different learning status and the size of exercise bank is quite large. The classic collaborative filtering (CF) based recommendation methods rely heavily on the similarities among students or exercises, leading to recommend exercises with mismatched difficulty. This paper proposes a novel exercise recommendation method, which uses Recurrent Neural Networks (RNNs) to predict the coverage of knowledge concepts, and uses Deep Knowledge Tracing (DKT) to predict students' mastery level of knowledge concepts based on the student's exercise answer records. The predictive results are utilized to filter the exercises; therefore, a subset of exercise bank is generated. As such, a complete list of recommended exercises can be obtained by solving an optimization problem. Extensive experimental studies show that our proposed approach has advantages over some existing baseline methods, not only in terms of the evaluation of difficulty of recommended exercises, but also the diversity and novelty of the recommendation lists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
11完成签到,获得积分10
2秒前
Ni完成签到,获得积分20
2秒前
chiyudoubao发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
doudou完成签到,获得积分10
3秒前
萌萌发布了新的文献求助10
4秒前
仰山雪完成签到 ,获得积分10
4秒前
胡占东发布了新的文献求助10
5秒前
5秒前
夹谷蕈完成签到 ,获得积分10
5秒前
深情安青应助Linux2000Pro采纳,获得10
6秒前
6秒前
6秒前
7秒前
06完成签到 ,获得积分10
7秒前
whisper1108完成签到,获得积分10
7秒前
8秒前
8秒前
朱孝培发布了新的文献求助10
8秒前
9秒前
9秒前
zxr发布了新的文献求助30
10秒前
10秒前
Mcling发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
whisper1108发布了新的文献求助10
11秒前
吴荣菲完成签到,获得积分20
11秒前
无限雨南完成签到,获得积分20
11秒前
自然的哈密瓜完成签到,获得积分10
11秒前
科研通AI5应助温冠儒采纳,获得10
11秒前
12秒前
自由宛筠发布了新的文献求助10
13秒前
13秒前
科研通AI5应助畅快芝麻采纳,获得10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775