Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production

光催化 异质结 种姓 材料科学 吸光度 纳米片 可见光谱 表面等离子共振 等离子体子 化学工程 光化学 降级(电信) 制氢 纳米颗粒 纳米技术 光电子学 催化作用 带隙 化学 有机化学 电信 工程类 色谱法 计算机科学
作者
Wei Zhao,Yajuan Li,Pushu Zhao,Lili Zhang,Benlin Dai,Jiming Xu,Haibao Huang,Yulong He,Dennis Y.C. Leung
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:405: 126555-126555 被引量:180
标识
DOI:10.1016/j.cej.2020.126555
摘要

A novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst was developed for the first time by in situ forming 3D flower-like SnS2 microspheres on the 2D Ag-C3N4 nanosheet. The photocatalytic performances of the samples were systematically examined via the photocatalytic water splitting for H2 production and photocatalytic degradation of tetracycline (TC) under visible light irradiation. Among the as-prepared Ag-C3N4/SnS2 samples with various Ag content, 5Ag-C3N4/SnS2 (the mass ratio of Ag to g-C3N4 is 5 wt%) sample exhibited the most efficient photocatalytic performances. The apparent reaction rate constant of 5Ag-C3N4/SnS2 for the photocatalytic oxidation of TC was 0.0201 min−1, which was 7.2, 4.9 and 3.0 times higher than those of the bare SnS2 (0.0028 min−1), g-C3N4 (0.0041 min−1) and g-C3N4/SnS2 (0.0066 min−1), respectively. As for the H2 production, a maximum of 1104.5 μmol g−1.h−1 can be achieved for the 5Ag-C3N4/SnS2. The enhancing photocatalytic performance was attributed to the enhanced absorbance in the visible light region caused by localized surface plasmon resonance (LSPR) and the efficient interfacial charge migration and separation in Ag-C3N4/SnS2 samples. In addition, the photocatalytic degradation pathway of TC was proposed based on nine degradation products confirmed by GC–MS. Finally, there were a series of characterization, such as time-resolved fluorescence emission decay spectra, photoelectrochemical characterizations, and stimulation methods (DFT, CASTEP, and FDTD), to verify the Z-scheme plasmonic heterojunction photocatalysis mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴图图完成签到,获得积分10
2秒前
葫芦娃完成签到,获得积分10
2秒前
希望天下0贩的0应助Siche采纳,获得10
2秒前
ding应助Trip_wyb采纳,获得10
3秒前
CipherSage应助冯斌采纳,获得10
3秒前
4秒前
4秒前
夏xx发布了新的文献求助10
5秒前
安安发布了新的文献求助10
6秒前
6秒前
ding应助稗子采纳,获得10
7秒前
明理的以亦完成签到,获得积分0
7秒前
7秒前
9秒前
ding应助新1采纳,获得10
9秒前
天天快乐应助新1采纳,获得10
9秒前
wanci应助新1采纳,获得10
9秒前
隐形曼青应助新1采纳,获得10
9秒前
天天快乐应助新1采纳,获得10
10秒前
科目三应助新1采纳,获得10
10秒前
科研通AI2S应助新1采纳,获得10
10秒前
lzy完成签到,获得积分10
10秒前
赘婿应助新1采纳,获得10
10秒前
SciGPT应助新1采纳,获得10
10秒前
慕青应助新1采纳,获得10
10秒前
Wxxxxx完成签到 ,获得积分10
10秒前
dmh关注了科研通微信公众号
10秒前
10秒前
许红祥完成签到,获得积分10
10秒前
王辰宁完成签到,获得积分10
10秒前
英俊的铭应助小河向东流采纳,获得10
10秒前
风清扬发布了新的文献求助10
11秒前
11秒前
12发布了新的文献求助10
11秒前
Criminology34应助Jerry采纳,获得10
11秒前
老福贵儿应助Jerry采纳,获得10
11秒前
王王应助Jerry采纳,获得30
11秒前
芳菲依旧应助Jerry采纳,获得30
11秒前
老福贵儿应助Jerry采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5683901
求助须知:如何正确求助?哪些是违规求助? 5034192
关于积分的说明 15182838
捐赠科研通 4843305
什么是DOI,文献DOI怎么找? 2596600
邀请新用户注册赠送积分活动 1549342
关于科研通互助平台的介绍 1507823