A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter

荷电状态 电池(电) 计算机科学 趋同(经济学) 卡尔曼滤波器 一般化 扩展卡尔曼滤波器 电压 均方误差 国家(计算机科学) 锂离子电池 算法 控制理论(社会学) 工程类 人工智能 功率(物理) 控制(管理) 数学 统计 物理 量子力学 数学分析 电气工程 经济 经济增长
作者
Yong Tian,Rucong Lai,Xiaoyu Li,Lijuan Xiang,Jindong Tian
出处
期刊:Applied Energy [Elsevier]
卷期号:265: 114789-114789 被引量:322
标识
DOI:10.1016/j.apenergy.2020.114789
摘要

Because of the extensive applications of lithium-ion batteries (LIBs) in electric vehicles (EVs), the battery management system (BMS) used to monitor the state and guarantee the operating safety of LIBs has been widely researched. The state of charge (SOC) is one of the most important states of LIBs that is monitored online. However, accurate SOC estimation is challenging because of erratic battery dynamics and SOC variation with current, temperature, operating conditions, etc. In this paper, a method combining a long short-term memory (LSTM) network with an adaptive cubature Kalman filter (ACKF) is proposed. The LSTM network is first utilized to learn the nonlinear relationship between the SOC and measurements, including current, voltage and temperature, and then, the ACKF is applied to smooth the outputs of the LSTM network, thus achieving accurate and stable SOC estimation. The proposed method can simplify the tedious procedure of tuning the parameters of the LSTM network, and it does not need to establish a battery model. Data collected from dynamic stress tests are used as training datasets, while data collected from US06 tests and federal urban driving schedules serve as test datasets to verify the generalization ability of the proposed method. Experimental results reveal that the proposed method can dramatically improve estimation accuracy compared with the solo LSTM method and the combined LSTM-CKF method, and it exhibits excellent generalization ability for different datasets and convergence ability to address initial errors. In particular, the root-mean-square error is less than 2.2%, and the maximum error is less than 4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静无招发布了新的文献求助10
刚刚
Accept2024发布了新的文献求助10
刚刚
科研通AI6应助rosestar采纳,获得10
刚刚
张志超发布了新的文献求助10
1秒前
FashionBoy应助静然采纳,获得10
1秒前
1秒前
科研通AI6应助橙子采纳,获得10
1秒前
JLLLLLLLL发布了新的文献求助10
2秒前
陆离完成签到 ,获得积分10
2秒前
顾矜应助luojiadream采纳,获得10
3秒前
3秒前
3秒前
机智小馒头完成签到 ,获得积分10
3秒前
不吃香菜完成签到,获得积分10
4秒前
天天快乐应助汪格森采纳,获得10
4秒前
烂漫明轩完成签到,获得积分10
4秒前
shell完成签到,获得积分10
4秒前
4秒前
4秒前
嗑盐式完成签到,获得积分10
5秒前
5秒前
懒骨头兄应助因子采纳,获得20
5秒前
5秒前
5秒前
英俊的铭应助rationality采纳,获得10
6秒前
orixero应助阿白采纳,获得10
6秒前
uzumay发布了新的文献求助10
7秒前
白芷发布了新的文献求助10
7秒前
科研通AI6应助万荼巳蕊采纳,获得10
7秒前
情怀应助笑点低振家采纳,获得10
8秒前
yajoyce完成签到,获得积分10
8秒前
8秒前
LX1005完成签到,获得积分10
8秒前
自觉的昊焱完成签到,获得积分10
8秒前
勤奋的方盒完成签到,获得积分10
8秒前
事不过三发布了新的文献求助10
8秒前
9秒前
科研白白完成签到,获得积分10
9秒前
自由冰海发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617995
求助须知:如何正确求助?哪些是违规求助? 4702644
关于积分的说明 14919816
捐赠科研通 4755944
什么是DOI,文献DOI怎么找? 2549907
邀请新用户注册赠送积分活动 1512744
关于科研通互助平台的介绍 1474288