Cumulated gain-based evaluation of IR techniques

相关性(法律) 计算机科学 情报检索 精确性和召回率 召回 数据挖掘 语言学 哲学 政治学 法学
作者
Kalervo Järvelin,Jaana Kekäläinen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:20 (4): 422-446 被引量:4311
标识
DOI:10.1145/582415.582418
摘要

Modern large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation. In order to develop IR techniques in this direction, it is necessary to develop evaluation approaches and methods that credit IR methods for their ability to retrieve highly relevant documents. This can be done by extending traditional evaluation methods, that is, recall and precision based on binary relevance judgments, to graded relevance judgments. Alternatively, novel measures based on graded relevance judgments may be developed. This article proposes several novel measures that compute the cumulative gain the user obtains by examining the retrieval result up to a given ranked position. The first one accumulates the relevance scores of retrieved documents along the ranked result list. The second one is similar but applies a discount factor to the relevance scores in order to devaluate late-retrieved documents. The third one computes the relative-to-the-ideal performance of IR techniques, based on the cumulative gain they are able to yield. These novel measures are defined and discussed and their use is demonstrated in a case study using TREC data: sample system run results for 20 queries in TREC-7. As a relevance base we used novel graded relevance judgments on a four-point scale. The test results indicate that the proposed measures credit IR methods for their ability to retrieve highly relevant documents and allow testing of statistical significance of effectiveness differences. The graphs based on the measures also provide insight into the performance IR techniques and allow interpretation, for example, from the user point of view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助卿年采纳,获得10
刚刚
1秒前
qi0625完成签到,获得积分10
2秒前
xiangxing完成签到,获得积分10
2秒前
2秒前
Hello应助对对碰采纳,获得10
3秒前
灵试巧开完成签到 ,获得积分10
4秒前
大神水瓶座完成签到,获得积分10
4秒前
Pweni完成签到,获得积分10
5秒前
6秒前
田様应助穆亦擎采纳,获得10
6秒前
7秒前
未何发布了新的文献求助10
7秒前
tom81882发布了新的文献求助30
8秒前
8秒前
KaK完成签到,获得积分10
9秒前
Echo1128完成签到 ,获得积分10
9秒前
CodeCraft应助Betty采纳,获得10
9秒前
丘比特应助学术渣渣采纳,获得10
10秒前
含蓄朝雪完成签到,获得积分10
10秒前
科研狗完成签到,获得积分10
11秒前
和谐续完成签到 ,获得积分10
12秒前
笨笨渊思发布了新的文献求助30
13秒前
研友通途完成签到 ,获得积分10
15秒前
JamesPei应助Lixuan采纳,获得10
15秒前
qqqxl完成签到,获得积分10
16秒前
16秒前
甜味白开水完成签到,获得积分10
17秒前
20秒前
21秒前
zhaochuangchuang完成签到,获得积分10
22秒前
学术渣渣发布了新的文献求助10
23秒前
23秒前
杨宁完成签到 ,获得积分10
23秒前
铅笔完成签到,获得积分10
25秒前
对对碰发布了新的文献求助10
25秒前
文耳东完成签到,获得积分10
26秒前
vicky完成签到 ,获得积分10
28秒前
翊然甜周完成签到,获得积分10
29秒前
清蒸鱼吖完成签到,获得积分20
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845742
求助须知:如何正确求助?哪些是违规求助? 3388072
关于积分的说明 10551720
捐赠科研通 3108711
什么是DOI,文献DOI怎么找? 1713024
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774891