维数(图论)
还原(数学)
降维
简单(哲学)
任务(项目管理)
足够的尺寸缩减
计算机科学
直线(几何图形)
算法
基质(化学分析)
数学
组合数学
人工智能
认识论
哲学
复合材料
经济
管理
材料科学
几何学
作者
Xiangrong Yin,Haileab Hilafu
摘要
Summary We propose a new and simple framework for dimension reduction in the large p, small n setting. The framework decomposes the data into pieces, thereby enabling existing approaches for n>p to be adapted to n < p problems. Estimating a large covariance matrix, which is a very difficult task, is avoided. We propose two separate paths to implement the framework. Our paths provide sufficient procedures for identifying informative variables via a sequential approach. We illustrate the paths by using sufficient dimension reduction approaches, but the paths are very general. Empirical evidence demonstrates the efficacy of our paths. Additional simulations and applications are given in an on-line supplementary file.
科研通智能强力驱动
Strongly Powered by AbleSci AI