电阻抗断层成像
有限元法
人工神经网络
离散化
计算机科学
电阻抗
代表(政治)
迭代重建
断层摄影术
电阻率层析成像
反问题
边界(拓扑)
算法
人工智能
数学分析
电阻率和电导率
数学
物理
电气工程
光学
工程类
热力学
政治
法学
政治学
作者
E. Ratajewicz-Mikołajczak,G.H. Shirkoohi,J. Sikora
摘要
Two Artificial Neural Network (ANN) reconstruction methods for Electrical Impedance Tomography (EIT) have been presented in this paper. The problem under study concerns the reconstruction of the conductivity distribution inside the investigated area, using the information collected from the boundary. The first approach consists in ANN learning using electrical potential vectors, which were obtained from numerical solution of the forward problems. The second method using a standard feed-forward multilayered neural networks, applies the circuit representation for the finite clement discretization. Using the quadrilateral finite element, the neural network structure for EIT problem has been proposed. The advantages and disadvantages both methods with respect to classical approach are discussed in detail.
科研通智能强力驱动
Strongly Powered by AbleSci AI