Shape Quantization and Recognition with Randomized Trees

数学 模式识别(心理学) 先验与后验 分类器(UML) 树(集合论) 特征向量 人工智能 二进制数 集合(抽象数据类型) 计算机科学 算法 组合数学 哲学 算术 认识论 程序设计语言
作者
Yali Amit,Donald Geman
出处
期刊:Neural Computation [MIT Press]
卷期号:9 (7): 1545-1588 被引量:1252
标识
DOI:10.1162/neco.1997.9.7.1545
摘要

We explore a new approach to shape recognition based on a virtually infinite family of binary features (queries) of the image data, designed to accommodate prior information about shape invariance and regularity. Each query corresponds to a spatial arrangement of several local topographic codes (or tags), which are in themselves too primitive and common to be informative about shape. All the discriminating power derives from relative angles and distances among the tags. The important attributes of the queries are a natural partial ordering corresponding to increasing structure and complexity; semi-invariance, meaning that most shapes of a given class will answer the same way to two queries that are successive in the ordering; and stability, since the queries are not based on distinguished points and substructures. No classifier based on the full feature set can be evaluated, and it is impossible to determine a priori which arrangements are informative. Our approach is to select informative features and build tree classifiers at the same time by inductive learning. In effect, each tree provides an approximation to the full posterior where the features chosen depend on the branch that is traversed. Due to the number and nature of the queries, standard decision tree construction based on a fixed-length feature vector is not feasible. Instead we entertain only a small random sample of queries at each node, constrain their complexity to increase with tree depth, and grow multiple trees. The terminal nodes are labeled by estimates of the corresponding posterior distribution over shape classes. An image is classified by sending it down every tree and aggregating the resulting distributions. The method is applied to classifying handwritten digits and synthetic linear and nonlinear deformations of three hundred [Formula: see text] symbols. State-of-the-art error rates are achieved on the National Institute of Standards and Technology database of digits. The principal goal of the experiments on [Formula: see text] symbols is to analyze invariance, generalization error and related issues, and a comparison with artificial neural networks methods is presented in this context. [Figure: see text]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白猹发布了新的文献求助10
2秒前
韩薇发布了新的文献求助10
3秒前
3秒前
pluto应助ss采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
英姑应助ssj采纳,获得10
5秒前
今后应助zxm采纳,获得10
5秒前
顾矜应助purplelove采纳,获得10
5秒前
li发布了新的文献求助10
5秒前
6秒前
无极微光应助zhangfuchao采纳,获得20
7秒前
文静的柠檬完成签到,获得积分10
10秒前
11秒前
晁子枫发布了新的文献求助20
11秒前
天天完成签到,获得积分10
13秒前
共享精神应助威尔士蛋蛋采纳,获得10
13秒前
Xnnnnnn完成签到,获得积分10
13秒前
14秒前
所所应助LLL采纳,获得10
14秒前
双儿发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
QQQ完成签到,获得积分10
17秒前
天天发布了新的文献求助10
18秒前
小俊完成签到,获得积分10
18秒前
失眠天川发布了新的文献求助10
20秒前
阿紫吖完成签到,获得积分10
21秒前
殷勤的花瓣完成签到 ,获得积分10
21秒前
繁荣的醉山完成签到 ,获得积分10
22秒前
22秒前
ARESCI发布了新的文献求助10
23秒前
24秒前
25秒前
所所应助LLL采纳,获得10
25秒前
28秒前
28秒前
buno发布了新的文献求助10
29秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583054
求助须知:如何正确求助?哪些是违规求助? 4667003
关于积分的说明 14764826
捐赠科研通 4609018
什么是DOI,文献DOI怎么找? 2528962
邀请新用户注册赠送积分活动 1498259
关于科研通互助平台的介绍 1466910