The DCT-CNN-ResNet50 architecture to classify brain tumors with super-resolution, convolutional neural network, and the ResNet50

离散余弦变换 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 图像质量 又称作 图像分辨率 分类器(UML) 卷积(计算机科学) 低分辨率 人工神经网络 计算机视觉 图像(数学) 高分辨率 图书馆学 地质学 遥感
作者
Anand Deshpande,Vania V. Estrela,Prashant P. Patavardhan
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:1 (4): 100013-100013 被引量:70
标识
DOI:10.1016/j.neuri.2021.100013
摘要

Brain tumors' diagnoses occur mainly by Magnetic resonance imaging (MRI) images. The tissue analysis methods are used to define these tumors. Nevertheless, few factors like the quality of an MRI device and low image resolution may degrade the quality of MRI images. Also, the detection of tumors in low-resolution images is challenging. A super-resolution method helps overcome this caveat. This work suggests Artificial Intelligence (AI)-based classification of brain tumor using Convolution Neural Network (CNN) algorithms is proposed to classify brain tumors using open-access datasets. This paper hiders on a novel Discrete Cosine Transform-based image fusion combined with Convolution Neural Network as a super-resolution and classifier framework that can distinguish (aka, classify) tissue as tumor and no tumor using open-access datasets. The framework's performance is analyzed with and without super-resolution method and achieved 98.14% accuracy rate has been detected with super-resolution and ResNet50 architecture. The experiments performed on MRI images show that the proposed super-resolution framework relies on the Discrete Cosine Transform (DCT), CNN, and ResNet50 (aka DCT-CNN-ResNet50) and capable of improving classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edtaa发布了新的文献求助10
1秒前
浮游应助十八鱼采纳,获得10
1秒前
zz关闭了zz文献求助
2秒前
材料诚发布了新的文献求助10
2秒前
刘小蕊发布了新的文献求助10
3秒前
浮游应助小幸运采纳,获得10
4秒前
6秒前
guo完成签到 ,获得积分10
7秒前
zzzqqq完成签到,获得积分10
7秒前
上官若男应助KFjiatang采纳,获得10
7秒前
打打应助桔子酱采纳,获得10
7秒前
隐形曼青应助刘永红采纳,获得10
7秒前
谦让小熊猫完成签到,获得积分10
8秒前
乐乐应助maomao采纳,获得10
9秒前
情怀应助可爱小张采纳,获得10
9秒前
ran关注了科研通微信公众号
10秒前
11秒前
12秒前
简单若云发布了新的文献求助10
12秒前
镓氧锌钇铀应助YY采纳,获得10
12秒前
12秒前
13秒前
Maples完成签到,获得积分10
13秒前
在水一方应助优乐美采纳,获得10
14秒前
Lucas应助XHR33采纳,获得10
14秒前
15秒前
暴躁的以山完成签到,获得积分10
16秒前
16秒前
浮游应助小巧寻桃采纳,获得10
16秒前
至乐无乐发布了新的文献求助10
16秒前
17秒前
李爱国应助kane浅采纳,获得10
17秒前
19秒前
jack1511完成签到,获得积分10
19秒前
MOB发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
Cornelius完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299726
求助须知:如何正确求助?哪些是违规求助? 4447841
关于积分的说明 13843825
捐赠科研通 4333454
什么是DOI,文献DOI怎么找? 2378848
邀请新用户注册赠送积分活动 1374078
关于科研通互助平台的介绍 1339634