Defect detection of injection molding products on small datasets using transfer learning

稳健性(进化) 判别式 卷积神经网络 人工智能 计算机科学 学习迁移 重新使用 目视检查 可视化 过程(计算) 支持向量机 自动X射线检查 模式识别(心理学) 机器学习 人工神经网络 图像处理 图像(数学) 工程类 化学 废物管理 操作系统 基因 生物化学
作者
Jiahuan Liu,Fei Guo,Huang Gao,Maoyuan Li,Yun Zhang,Huamin Zhou
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:70: 400-413 被引量:70
标识
DOI:10.1016/j.jmapro.2021.08.034
摘要

Appearance defect detection of products is a demanding procedure in the manufacturing process. Existing appearance defect inspection mainly relies on manual visual inspection, which is neither efficient nor accurate enough to ensure the manufacturing quality. Thus, automatic defect inspection has become an urgent demand. A critical problem hindering extensive applications of automatic defect inspection is that there are only limited defective samples to develop classification algorithms, leading to inadequate accuracy or robustness to meet industrial requirements. This paper proposed a knowledge reuse strategy to train convolutional neural network (CNN) models to improve defect inspection accuracy and robustness. By introducing model-based transfer learning and data augmentation, the knowledge from other vision tasks is transferred to industrial defect inspection tasks, resulting in high accuracy with limited training samples. Experimental results on an injection molding product showed that the detection accuracy was improved to about 99% when only 200 images per category were available. In comparison, conventional CNN models and the support vector machine method could achieve an average accuracy of only about 88.70% and 86.90%, respectively. The proposed method was also robust enough in detecting complicated defects which had many diversified appearances. The visualization method also proved that the performance improvement of the proposed method was because the model accurately extracted the discriminative features of the defective regions in the input images. The proposed method is meaningful for automatic defect detection in the manufacturing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无昵称完成签到,获得积分10
刚刚
清脆糖豆完成签到,获得积分10
刚刚
ZOE应助初之采纳,获得20
刚刚
李燕完成签到,获得积分20
1秒前
老迟到的小蘑菇完成签到 ,获得积分10
1秒前
meinvaikeyan完成签到,获得积分10
1秒前
文龙发布了新的文献求助10
1秒前
1秒前
我是老大应助夏夏采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
孙文远完成签到,获得积分10
3秒前
David完成签到,获得积分10
3秒前
YH完成签到,获得积分10
3秒前
AaronDP完成签到,获得积分10
3秒前
Coral完成签到,获得积分10
3秒前
万象完成签到,获得积分10
4秒前
啊啊啊完成签到,获得积分10
4秒前
考拉完成签到 ,获得积分20
4秒前
云fly完成签到,获得积分10
4秒前
Wlynn发布了新的文献求助20
4秒前
5秒前
傲娇如天发布了新的文献求助10
5秒前
5秒前
zzz发布了新的文献求助10
5秒前
罗密欧与傅里叶完成签到,获得积分10
6秒前
塔莉娅完成签到,获得积分10
6秒前
安静的凡松完成签到,获得积分10
6秒前
achilles发布了新的文献求助10
7秒前
7秒前
mia完成签到,获得积分10
7秒前
Eternal完成签到 ,获得积分10
7秒前
勤奋笑卉发布了新的文献求助10
8秒前
炙热的冰萍完成签到,获得积分10
8秒前
zzzz完成签到,获得积分10
8秒前
8秒前
8秒前
SciGPT应助zxj采纳,获得10
8秒前
8秒前
9秒前
AaronDP发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080327
求助须知:如何正确求助?哪些是违规求助? 4298282
关于积分的说明 13390804
捐赠科研通 4121842
什么是DOI,文献DOI怎么找? 2257344
邀请新用户注册赠送积分活动 1261652
关于科研通互助平台的介绍 1195768