生物
全基因组关联研究
连锁不平衡
蛋白质组
遗传学
遗传关联
计算生物学
次等位基因频率
数量性状位点
基因组学
蛋白质组学
疾病
表达数量性状基因座
基因组
等位基因
单核苷酸多态性
基因
单倍型
等位基因频率
基因型
医学
病理
作者
Egil Ferkingstad,Patrick Sulem,Bjarni A. Atlason,Garðar Sveinbjörnsson,Magnus I. Magnusson,Edda L. Styrmisdottir,Kristbjörg Gunnarsdóttir,Agnar Helgason,Ásmundur Oddsson,Bjarni V. Halldórsson,Brynjar Ö. Jensson,Florian Zink,Gísli H. Halldórsson,Gísli Másson,Gudny A. Arnadottir,Hildigunnur Katrínardóttir,Kristinn Juliusson,Magnús K. Magnússon,Ólafur Þ. Magnússon,Rún Friðriksdóttir
出处
期刊:Nature Genetics
[Nature Portfolio]
日期:2021-12-01
卷期号:53 (12): 1712-1721
被引量:840
标识
DOI:10.1038/s41588-021-00978-w
摘要
The plasma proteome can help bridge the gap between the genome and diseases. Here we describe genome-wide association studies (GWASs) of plasma protein levels measured with 4,907 aptamers in 35,559 Icelanders. We found 18,084 associations between sequence variants and levels of proteins in plasma (protein quantitative trait loci; pQTL), of which 19% were with rare variants (minor allele frequency (MAF) < 1%). We tested plasma protein levels for association with 373 diseases and other traits and identified 257,490 associations. We integrated pQTL and genetic associations with diseases and other traits and found that 12% of 45,334 lead associations in the GWAS Catalog are with variants in high linkage disequilibrium with pQTL. We identified 938 genes encoding potential drug targets with variants that influence levels of possible biomarkers. Combining proteomics, genomics and transcriptomics, we provide a valuable resource that can be used to improve understanding of disease pathogenesis and to assist with drug discovery and development.
科研通智能强力驱动
Strongly Powered by AbleSci AI