计算机科学
采样(信号处理)
样品(材料)
机器学习
空格(标点符号)
序贯抽样
数据挖掘
主动学习(机器学习)
人工智能
统计
数学
滤波器(信号处理)
操作系统
化学
色谱法
空间分布
计算机视觉
作者
Yuan Tian,Turab Lookman,Dezhen Xue
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2021-03-24
卷期号:30 (5): 050705-050705
被引量:9
标识
DOI:10.1088/1674-1056/abf12d
摘要
Accelerating materials discovery crucially relies on strategies that efficiently sample the search space to label a pool of unlabeled data. This is important if the available labeled data sets are relatively small compared to the unlabeled data pool. Active learning with efficient sampling methods provides the means to guide the decision making to minimize the number of experiments or iterations required to find targeted properties. We review here different sampling strategies and show how they are utilized within an active learning loop in materials science.
科研通智能强力驱动
Strongly Powered by AbleSci AI