A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
万能图书馆应助威武蜜蜂采纳,获得10
2秒前
2秒前
zkl发布了新的文献求助10
2秒前
LI完成签到,获得积分10
2秒前
十月完成签到 ,获得积分10
2秒前
吴晨曦发布了新的文献求助10
2秒前
英俊的铭应助聪明的青雪采纳,获得10
3秒前
小小鱼发布了新的文献求助10
4秒前
4秒前
李伟完成签到,获得积分10
4秒前
crina发布了新的文献求助10
4秒前
勤劳的雨琴完成签到,获得积分10
4秒前
5秒前
5秒前
zheng发布了新的文献求助10
5秒前
充电宝应助听风轻语采纳,获得10
5秒前
5秒前
阿秧发布了新的文献求助10
6秒前
领导范儿应助刘觅儿采纳,获得10
6秒前
L_Gary完成签到 ,获得积分10
6秒前
7秒前
liuttinn完成签到,获得积分10
7秒前
SSS发布了新的文献求助10
7秒前
momo完成签到,获得积分10
8秒前
传奇3应助汤圆采纳,获得10
8秒前
8秒前
跳跃的惮发布了新的文献求助30
8秒前
领导范儿应助HOHO采纳,获得10
9秒前
zzz完成签到,获得积分10
9秒前
Cheng_Y发布了新的文献求助30
10秒前
aaqw_8完成签到,获得积分10
10秒前
10秒前
刘子豪完成签到,获得积分20
10秒前
赵赵a发布了新的文献求助10
10秒前
10秒前
11秒前
风笛关注了科研通微信公众号
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868