化学
膦酸盐
铜
催化作用
脱质子化
磷化氢
氧化膦
氧原子
炔烃
光化学
氧气
药物化学
立体化学
高分子化学
分子
有机化学
离子
作者
Liu Leo Liu,Yile Wu,Ze‐Shu Wang,Jun Zhu,Yufen Zhao
摘要
The reaction mechanism of copper-catalyzed phosphorylation of terminal alkynes under different conditions has been investigated experimentally and theoretically. The important role of dioxygen has been elucidated, including the formation of η1-superoxocopper(II), η2-superoxocopper(III), μ-η2:η2-peroxodicopper(II), and bis(μ-oxo)dicopper(III) complexes. More importantly, the proton transfer from the dialkyl phosphonate (in the form of phosphite) to the bridging oxygen atom entails the migration of the deprotonated phosphonate to the terminal alkyne, leading to the formation of a C–P bond with an activation barrier of only 1.8 kcal/mol. In addition, a particularly stable six-centered dicopper(I) species is formed with the migration of both of the Ph2P(O) groups from the copper atoms to the oxygen atoms of the bis(μ-oxo) bridge, explaining the experimental observation that secondary phosphine oxides can be oxidized to the phosphinic acids. Thus, the diphenylphosphine oxide was added to the reaction mixture dropwise to minimize the concentration during the reaction course. Gratifyingly, the coupling product was generated almost quantitatively when the reaction was completed.
科研通智能强力驱动
Strongly Powered by AbleSci AI