Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 放化疗 病态的 完全响应 放射科 无线电技术 结直肠癌 肿瘤科 新辅助治疗 内科学 癌症 化疗 乳腺癌
作者
Zhenyu Liu,Xiaoyan Zhang,Yan‐Jie Shi,Lin Wang,Haitao Zhu,Zhenchao Tang,Shuo Wang,Xiao-Ting Li,Jie Tian,Ying‐Shi Sun
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (23): 7253-7262 被引量:542
标识
DOI:10.1158/1078-0432.ccr-17-1038
摘要

Abstract Purpose: To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC). Experimental Design: We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample t test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation. Results: The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185–0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model. Conclusions: Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. Clin Cancer Res; 23(23); 7253–62. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shining完成签到,获得积分10
1秒前
suyuan发布了新的文献求助10
1秒前
有人管发布了新的文献求助30
2秒前
3秒前
Peng发布了新的文献求助10
3秒前
4秒前
好结局完成签到 ,获得积分10
4秒前
四季发布了新的文献求助10
5秒前
Jasper应助虚幻的珩采纳,获得10
6秒前
Akim应助大胆龙猫采纳,获得10
6秒前
游一完成签到,获得积分10
7秒前
舒心的大有完成签到,获得积分10
7秒前
小管家完成签到,获得积分10
7秒前
7秒前
哩哩完成签到 ,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
AJ发布了新的文献求助10
11秒前
11秒前
emma发布了新的文献求助50
11秒前
闲云野鹤完成签到,获得积分10
12秒前
彭于晏应助shell采纳,获得30
12秒前
英姑应助付研琪采纳,获得10
12秒前
烤麸完成签到,获得积分10
12秒前
小辰发布了新的文献求助10
13秒前
科研通AI6应助读书的时候采纳,获得10
13秒前
13秒前
hs完成签到,获得积分0
13秒前
14秒前
14秒前
烂漫明轩发布了新的文献求助30
14秒前
开心樱完成签到,获得积分10
14秒前
dawangraoming完成签到,获得积分10
15秒前
华仔应助123采纳,获得10
15秒前
淇淇完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700730
求助须知:如何正确求助?哪些是违规求助? 5140373
关于积分的说明 15231782
捐赠科研通 4855900
什么是DOI,文献DOI怎么找? 2605520
邀请新用户注册赠送积分活动 1556868
关于科研通互助平台的介绍 1514960