化学
冷凝
化学物理
电化学
静电
表征(材料科学)
电荷(物理)
膜
静电学
纳米技术
能源景观
生物物理学
生物信息学
分子动力学
细胞内
细胞内pH值
生物物理化学
电化学梯度
计算化学
中和
作者
Hannes Ausserwöger,Xiqiao Yang,Tomas Šneideris,Nadia A. Erkamp,Daoyuan Qian,Ella de Csilléry,Ieva Baronaite,Kadi L. Saar,Alan Z. Białek,Marc Oeller,Georg Krainer,Titus M. Franzmann,Hao Ruan,Gaetano Invernizzi,Gaetano Invernizzi,Anthony A. Hyman,Simon Alberti,Nikolai Lorenzen,Tuomas P. J. Knowles
标识
DOI:10.1038/s41557-025-02039-9
摘要
Abstract Electrochemical gradients are essential to the functioning of cells and form across membranes using active transporters. Here we show in contrast that condensed biomolecular systems—often termed condensates—sustain pH gradients without any external energy input. By studying individual condensates on the micrometre scale using a microdroplet platform, we reveal dense-phase pH shifts towards conditions of minimal electrostatic repulsion. We demonstrate that protein condensates can drive substantial alkaline and acidic gradients, which are compositionally tunable and can extend to complex architectures sustaining multiple unique pH conditions simultaneously. Through in silico characterization of human proteomic condensate networks, we further highlight potential wide-ranging electrochemical properties emerging from condensation in nature, while correlating intracellular condensate pH gradients with complex biomolecular composition. Together, the emergent nature of condensation shapes distinct pH microenvironments, thereby creating a regulatory mechanism to modulate biochemical activity in living and artificial systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI