数学
对数
数学分析
奇点
傅里叶变换
应用数学
收敛速度
维数(图论)
近似误差
指数函数
上下界
数值分析
光谱法
特征向量
滤波器(信号处理)
非线性系统
伪谱法
波动方程
趋同(经济学)
最优控制
反向
积分器
时间导数
理论(学习稳定性)
能量(信号处理)
区间(图论)
孤子
平滑度
截断误差
舍入误差
指数稳定性
指数衰减
指数增长
作者
Weizhu Bao,Ying Ma,Chushan Wang
标识
DOI:10.1093/imanum/draf108
摘要
Abstract We prove a nearly optimal error bound on the exponential wave integrator Fourier spectral (EWI-FS) method for the logarithmic Schrödinger equation (LogSE) under the assumption of an $H^{2}$-solution, which is theoretically guaranteed. Subject to a Courant–Friedrichs–Lewy (CFL)-type time step size restriction $\tau |\!\ln \tau | \lesssim h^{2}/|\!\ln h|$ for obtaining the stability of the numerical scheme affected by the singularity of the logarithmic nonlinearity, an $L^{2}$-norm error bound of order $O(\tau |\!\ln \tau |^{2} + h^{2} |\!\ln h|)$ is established, where $\tau $ is the time step size and $h$ is the mesh size. Compared to the error estimates of the LogSE in the literature, our error bound either greatly improves the convergence rate under the same regularity assumptions or significantly weakens the regularity requirement to obtain the same convergence rate. Moreover, our result can be directly applied to the LogSE with low regularity $L^\infty $-potential, which is not allowed in the existing error estimates. Two main ingredients are adopted in the proof: (i) an $H^{2}$-conditional $L^{2}$-stability estimate, which is established using the energy method to avoid singularity of the logarithmic nonlinearity and (ii) mathematical induction with inverse inequalities to control the $H^{2}$-norm of the numerical solution. Numerical results are reported to confirm our error estimates and demonstrate the necessity of the time step size restriction imposed. We also apply the EWI-FS method to investigate soliton collisions in one dimension and vortex dipole dynamics in two dimensions.
科研通智能强力驱动
Strongly Powered by AbleSci AI