Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

生成语法 计算机科学 对抗制 异常检测 生成对抗网络 数据科学 人工智能 机器学习 深度学习
作者
Fiete Lüer,Christian Böhm
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:25 (2): 29-41
标识
DOI:10.1145/3655103.3655109
摘要

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available. In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助依亦然采纳,获得10
1秒前
简单水蓉发布了新的文献求助30
1秒前
乐观小之应助欣喜眼神采纳,获得10
1秒前
2秒前
饱满翠绿发布了新的文献求助10
3秒前
XXYY发布了新的文献求助30
3秒前
科研通AI5应助勤劳的筝采纳,获得10
3秒前
whisper完成签到,获得积分20
5秒前
5秒前
梦溪完成签到 ,获得积分10
7秒前
英姑应助Conccuc采纳,获得10
7秒前
无情的匪完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
领导范儿应助123采纳,获得10
10秒前
10秒前
pannyfeng完成签到,获得积分10
10秒前
喃喃发布了新的文献求助10
12秒前
嘀嘀嘀发布了新的文献求助10
13秒前
whisper发布了新的文献求助10
14秒前
15秒前
15秒前
XXYY完成签到,获得积分10
16秒前
Melody发布了新的文献求助10
16秒前
星璇发布了新的文献求助10
17秒前
Minjalee完成签到,获得积分0
17秒前
18秒前
hana发布了新的文献求助10
18秒前
饱满翠绿完成签到,获得积分10
21秒前
小生完成签到,获得积分10
22秒前
仿生人发布了新的文献求助10
23秒前
23秒前
完美世界应助嘀嘀嘀采纳,获得10
24秒前
喜洋洋完成签到,获得积分10
25秒前
wjz完成签到,获得积分10
25秒前
oo发布了新的文献求助10
28秒前
Planta完成签到,获得积分10
29秒前
29秒前
贝贝贝完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243