An enhanced principal component analysis method with Savitzky–Golay filter and clustering algorithm for sensor fault detection and diagnosis

主成分分析 数据库扫描 聚类分析 算法 断层(地质) 噪音(视频) 计算机科学 故障检测与隔离 滤波器(信号处理) 数据挖掘 模式识别(心理学) 人工智能 计算机视觉 执行机构 树冠聚类算法 相关聚类 地震学 图像(数学) 地质学
作者
Shuqing Wen,Weirong Zhang,Yifu Sun,Zhenxi Li,Boju Huang,Shouguo Bian,Lin Zhao,Yan Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:337: 120862-120862 被引量:35
标识
DOI:10.1016/j.apenergy.2023.120862
摘要

Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an uncomfortable indoor environment and energy wastage. To detect and identify sensor faults quickly, this study proposes an enhanced principal component analysis (PCA) method using the Savitzky–Golay (SG) filter and density-based spatial clustering of applications with noise (DBSCAN) algorithm. First, the DBSCAN algorithm is used to automatically divide the dataset into sub-datasets with different working conditions to reduce the interference information and concentrate the information of each training set. Then, each sub-dataset is smoothed using the SG algorithm to reduce the effects of data fluctuations. The processed dataset is used to build a sub-PCA model that ultimately identifies and locates faults. The proposed strategy is validated using field operating data for 20 air-handling unit (AHU) systems, as obtained from a large commercial building. The fault detection performances of multiple strategies are compared and analysed under different degrees of bias in single AHU and multiple AHU systems. The verification results show that the proposed DBSCAN-SG-PCA model offers significant improvements in fault detection accuracy and fault identification sensitivity over the conventional PCA method. Compared with the SG-PCA model, the proposed model reduces the amount of data required for fault detection by an average of 13.7%, and the Youden index is increased by an average of 0.21. Furthermore, the fault detection accuracy of the proposed model is ±0.7 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助卞卞采纳,获得10
2秒前
pojian完成签到,获得积分10
2秒前
3秒前
OKC关闭了OKC文献求助
3秒前
3秒前
3秒前
西瓜刀发布了新的文献求助10
3秒前
DDDD应助无聊的发夹采纳,获得30
3秒前
蓝色发布了新的文献求助10
4秒前
7秒前
rpe发布了新的文献求助10
8秒前
白兰鸽发布了新的文献求助10
9秒前
rye发布了新的文献求助10
9秒前
MITNO1完成签到,获得积分10
9秒前
9秒前
10秒前
coconut完成签到 ,获得积分10
11秒前
小贝壳要快乐吖完成签到,获得积分10
12秒前
刘璇发布了新的文献求助10
12秒前
蓝色发布了新的文献求助10
13秒前
科研发布了新的社区帖子
14秒前
蓝岳洋发布了新的文献求助10
15秒前
15秒前
18秒前
19秒前
rye完成签到,获得积分10
20秒前
22秒前
蓝色发布了新的文献求助10
23秒前
wang完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
林俊超完成签到 ,获得积分10
27秒前
朴实一曲完成签到,获得积分10
27秒前
老10发布了新的文献求助10
29秒前
快乐的蓝发布了新的文献求助10
30秒前
Summer完成签到,获得积分10
31秒前
蓝色发布了新的文献求助80
32秒前
丘比特应助ComeOn采纳,获得10
32秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445