CT synthesis from multi-sequence MRI using adaptive fusion network

计算机科学 序列(生物学) 人工智能 融合 化学 语言学 哲学 生物化学
作者
Yan Li,Sisi Xu,Haibin Chen,Ying Sun,Jing Bian,Shuanshuan Guo,Yao Lu,Zhenyu Qi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106738-106738 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.106738
摘要

To investigate a method using multi-sequence magnetic resonance imaging (MRI) to synthesize computed tomography (CT) for MRI-only radiation therapy.We proposed an adaptive multi-sequence fusion network (AMSF-Net) to exploit both voxel- and context-wise cross-sequence correlations from multiple MRI sequences to synthesize CT using element- and patch-wise fusions, respectively. The element- and patch-wise fusion feature spaces were combined, and the most representative features were selected for modeling. Finally, a densely connected convolutional decoder was applied to utilize the selected features to produce synthetic CT images.This study includes a total number of 90 patients' T1-weighted MRI, T2-weighted MRI and CT data. The AMSF-Net reduced the average mean absolute error (MAE) from 52.88-57.23 to 49.15 HU, increased the peak signal-to-noise ratio (PSNR) from 24.82-25.32 to 25.63 dB, increased the structural similarity index measure (SSIM) from 0.857-0.869 to 0.878, and increased the dice coefficient of bone from 0.886-0.896 to 0.903 compared to the other three existing multi-sequence learning models. The improvements were statistically significant according to two-tailed paired t-test. In addition, AMSF-Net reduced the intensity difference with real CT in five organs at risk, four types of normal tissue and tumor compared with the baseline models. The MAE decreases in parotid and spinal cord were over 8% and 16% with reference to the mean intensity value of the corresponding organ, respectively. Further, the qualitative evaluations confirmed that AMSF-Net exhibited superior structural image quality of synthesized bone and small organs such as the eye lens.The proposed method can improve the intensity and structural image quality of synthetic CT and has potential for use in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
5秒前
DPF完成签到,获得积分10
6秒前
zhengyuci发布了新的文献求助30
7秒前
研友_LBKqyn发布了新的文献求助10
7秒前
7秒前
HtheJ发布了新的文献求助10
9秒前
突突突发布了新的文献求助10
9秒前
12秒前
12秒前
涨芝士发布了新的文献求助10
13秒前
16秒前
小马甲应助突突突采纳,获得10
17秒前
17秒前
fangyifang发布了新的文献求助30
17秒前
整齐醉波完成签到 ,获得积分10
18秒前
惊蛰完成签到 ,获得积分10
18秒前
zhengyuci完成签到,获得积分10
20秒前
Zhengkeke发布了新的文献求助100
20秒前
热心的飞风完成签到 ,获得积分10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
panpan发布了新的文献求助10
22秒前
25秒前
rym完成签到 ,获得积分10
27秒前
懒大王完成签到 ,获得积分10
27秒前
33秒前
平常的三问完成签到 ,获得积分10
34秒前
也是难得取个名完成签到 ,获得积分10
36秒前
pluto应助姽婳wy采纳,获得10
36秒前
小五发布了新的文献求助10
38秒前
Chasing完成签到 ,获得积分10
39秒前
panpan完成签到,获得积分20
41秒前
liyanglin完成签到 ,获得积分10
41秒前
43秒前
华仔应助聪慧的鹤轩采纳,获得30
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321789
关于积分的说明 10207888
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666556
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872