Nonlinear Neural Dynamics and Classification Accuracy in Reservoir Computing.

非线性系统 油藏计算 人工神经网络 计算机科学 动力学(音乐) 人工智能 算法 数学 机器学习 循环神经网络 心理学 物理 教育学 量子力学
作者
Claus Metzner,Achim Schilling,Andreas Maier,Patrick Krauß
出处
期刊:PubMed 卷期号:: 1-36
标识
DOI:10.1162/neco_a_01770
摘要

Reservoir computing information processing based on untrained recurrent neural networks with random connections is expected to depend on the nonlinear properties of the neurons and the resulting oscillatory, chaotic, or fixed-point dynamics of the network. However, the degree of nonlinearity required and the range of suitable dynamical regimes for a given task remain poorly understood. To clarify these issues, we study the classification accuracy of a reservoir computer in artificial tasks of varying complexity while tuning both the neuron's degree of nonlinearity and the reservoir's dynamical regime. We find that even with activation functions of extremely reduced nonlinearity, weak recurrent interactions, and small input signals, the reservoir can compute useful representations. These representations, detectable only in higher-order principal components, make complex classification tasks linearly separable for the readout layer. Increasing the recurrent coupling leads to spontaneous dynamical behavior. Nevertheless, some input-related computations can "ride on top" of oscillatory or fixed-point attractors with little loss of accuracy, whereas chaotic dynamics often reduces task performance. By tuning the system through the full range of dynamical phases, we observe in several classification tasks that accuracy peaks at both the oscillatory/chaotic and chaotic/fixed-point phase boundaries, supporting the edge of chaos hypothesis. We also present a regression task with the opposite behavior. Our findings, particularly the robust weakly nonlinear operating regime, may offer new perspectives for both technical and biological neural networks with random connectivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
FashionBoy应助烁丶采纳,获得10
刚刚
alpha完成签到,获得积分10
刚刚
刚刚
说的很对1完成签到,获得积分10
1秒前
思源应助企鹅QQ采纳,获得10
1秒前
等等来不及了完成签到,获得积分10
1秒前
Tu发布了新的文献求助10
1秒前
1秒前
Tom完成签到,获得积分10
1秒前
权翼完成签到,获得积分10
2秒前
小吕完成签到,获得积分10
3秒前
ar发布了新的文献求助10
3秒前
慕青应助zhanghao采纳,获得10
3秒前
Daniel发布了新的文献求助30
4秒前
lsh完成签到 ,获得积分10
5秒前
CodeCraft应助葡萄小伊ovo采纳,获得10
5秒前
火星上幻露完成签到,获得积分10
5秒前
打打应助李联洪采纳,获得10
5秒前
5秒前
6秒前
朗源Wu发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
五十完成签到 ,获得积分10
7秒前
7秒前
8秒前
Gossip完成签到,获得积分10
8秒前
yzx完成签到 ,获得积分10
9秒前
majf发布了新的文献求助10
9秒前
10秒前
王文艺发布了新的文献求助10
10秒前
浮游应助能干的月光采纳,获得10
10秒前
10秒前
11秒前
11秒前
Fiy完成签到,获得积分10
11秒前
11秒前
马静发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496204
求助须知:如何正确求助?哪些是违规求助? 4593999
关于积分的说明 14442994
捐赠科研通 4526570
什么是DOI,文献DOI怎么找? 2480215
邀请新用户注册赠送积分活动 1464876
关于科研通互助平台的介绍 1437666