Mathematical Modeling for Normalizing Pressure Probe Measurements Using Symbolic Regression

校准 喷射(流体) 空气动力学 航程(航空) 马赫数 静压 回归 流量(数学) 跨音速 实验数据 数学 计算机科学 算法 机械 统计 物理 工程类 航空航天工程
作者
Dahae Jeong,Kang-Il Lee,Emma M Smithwick,Tamara Guimarães
标识
DOI:10.1115/gt2025-153031
摘要

Abstract This study explores the use of advanced techniques to enhance the calibration process of multi-hole pressure probes in low subsonic flow regime. Specifically, machine learning methods, including Ridge and Lasso regression, were employed to reduce experimental efforts and improve the accuracy of calibration coefficients. The experimental calibration was conducted using a hemispherical straight five-hole probe within a subsonic flow range of Mach 0.1 to 0.3. Calibration maps generated from the experimental data were compared with those predicted by the regression models to assess their performance. The results demonstrated that the regression models achieved high R2 values for pitch, yaw, and stagnation pressure coefficients, indicating strong predictive capabilities and robust performance. However, the prediction accuracy for the static pressure coefficient was lower, likely due to its direct relationship with jet flow rate and associated complexities. The distribution of the raw data was particularly suitable for directly observing correlations. Except for the static pressure coefficients representing the normalized difference between the total and the static jet pressure, the data in the subsonic flow range exhibited nearly identical patterns and distributions. This consistency suggests that the regression model can accurately predict the probe response at arbitrary velocities within the low subsonic range. This study confirms that employing machine learning techniques can significantly enhance the efficiency and reliability of multi-hole probe calibration, making these methods valuable for aerodynamic applications and fluid dynamics research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪碧完成签到,获得积分10
刚刚
烟花应助温柔的婷采纳,获得10
刚刚
刘标发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
Zard完成签到,获得积分10
1秒前
lessismore发布了新的文献求助10
1秒前
1秒前
2秒前
ken完成签到,获得积分10
2秒前
3秒前
wuwu完成签到,获得积分10
3秒前
4秒前
Zz发布了新的文献求助10
4秒前
4秒前
安渝发布了新的文献求助10
5秒前
lxp完成签到,获得积分10
5秒前
细心的思天完成签到 ,获得积分10
5秒前
hahhha完成签到,获得积分20
6秒前
紫薰发布了新的文献求助10
6秒前
科目三应助yu采纳,获得10
6秒前
dimples完成签到 ,获得积分10
6秒前
2rrd完成签到 ,获得积分20
7秒前
小杭76应助風声鶴唳采纳,获得10
8秒前
8秒前
8秒前
8秒前
李健的小迷弟应助Lily采纳,获得10
8秒前
Jiayi发布了新的文献求助10
8秒前
jane发布了新的文献求助10
9秒前
wlscj应助迷路芝麻采纳,获得20
9秒前
情怀应助z.采纳,获得10
9秒前
冷傲初夏发布了新的文献求助10
9秒前
lca507完成签到,获得积分10
9秒前
赘婿应助hahhha采纳,获得20
10秒前
10秒前
xxw发布了新的文献求助10
10秒前
Jasper应助快乐的晟睿采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271196
求助须知:如何正确求助?哪些是违规求助? 4429021
关于积分的说明 13786927
捐赠科研通 4307036
什么是DOI,文献DOI怎么找? 2363433
邀请新用户注册赠送积分活动 1359035
关于科研通互助平台的介绍 1321984