A Firm’s Operational Risk: Data Set and Empirical Evidence

作者
Vivek Astvansh,Joseph Simpson
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:28 (1): 326-341 被引量:1
标识
DOI:10.1287/msom.2025.0134
摘要

Problem definition: A firm’s stakeholders would benefit from a quantitative measure of the managerial disclosure of its operational risk and the implications of this disclosure. However, a quantitative and scalable measure of a firm’s disclosed operational risk is unavailable. Thus, the firm’s stakeholders remain unaware of its disclosed operational risk and the risk’s implications. Methodology/results: U.S. law requires a public firm to textually disclose its operational and nonoperational risks in Item 1A of its annual report (i.e., Form 10-K). We train 64 transformer models on U.S. public firms’ Item 1A text to score 131,920 firm-years (16,959 firms, 2005 to 2024) on eight risk factors: (1) accounting, (2) finance, (3) international, (4) legal, (5) management, (6) marketing, (7) operations, and (8) technology. We measure each transformer’s performance on eight metrics. Next, our Python code retains each risk factor’s best-performing transformer (among the eight). Subsequently, our regression estimates report that a firm’s disclosed operational risk is positively associated with its operational cost and that its disclosed nonoperational risk strengthens this positive association, thus supporting our two hypotheses. Our OSF repository includes an Excel file that contains a data dictionary and count and probability scores of the eight risk factors for 131,920 firm-years (16,959 firms, 2005 to 2024). The repository also includes our Python code file and trained models’ files. Managerial implications: First, our empirical evidence informs managers and corporate stakeholders that a firm’s disclosed operational and nonoperational risks are associated with its operational cost, thus showcasing disclosure’s relevance. Second, our Excel data file provides stakeholders with eight risk factors for 131,920 firm-years (16,959 firms, 2005 to 2024). Third, one can also use our Python code files and trained transformers to measure risk reflected in other sources of firm-generated text (e.g., managers’ answers in earnings calls, CEO interviews, and press releases). Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2025.0134 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
迷路凌柏完成签到 ,获得积分10
3秒前
Sean发布了新的文献求助10
3秒前
sora完成签到,获得积分10
8秒前
8秒前
jason完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
17秒前
三月完成签到,获得积分10
18秒前
20秒前
zzzz完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
25秒前
liuyq0501完成签到,获得积分0
26秒前
不穷知识完成签到,获得积分10
27秒前
峰成完成签到 ,获得积分10
28秒前
32秒前
失眠的访枫完成签到 ,获得积分10
33秒前
听寒完成签到,获得积分10
33秒前
37秒前
WebCasa发布了新的文献求助30
38秒前
量子星尘发布了新的文献求助10
40秒前
大饼完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
yurunxintian完成签到,获得积分10
45秒前
拼搏的盼山完成签到 ,获得积分10
46秒前
47秒前
赵赵完成签到 ,获得积分10
47秒前
Orange应助ATOM采纳,获得10
50秒前
量子星尘发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
54秒前
想发一篇贾克斯完成签到,获得积分10
57秒前
还行吧完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
花海完成签到 ,获得积分10
1分钟前
打打应助石头采纳,获得10
1分钟前
酷炫凡完成签到 ,获得积分10
1分钟前
whandzxl完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5781285
求助须知:如何正确求助?哪些是违规求助? 5663931
关于积分的说明 15454019
捐赠科研通 4911463
什么是DOI,文献DOI怎么找? 2643635
邀请新用户注册赠送积分活动 1591288
关于科研通互助平台的介绍 1545989