开源
计算机科学
化学
数据科学
程序设计语言
软件
作者
Zhengkai Tu,Sourabh J. Choure,Mun Hong Fong,Jihye Roh,Itai Levin,Kevin Yu,Joonyoung F. Joung,Nathan Morgan,Shih‐Cheng Li,Xiaoying Sun,Heshan Lin,Mark Murnin,Jordan P. Liles,Thomas J. Struble,Michael Fortunato,Mengjie Liu,William H. Green,Klavs F. Jensen,Connor W. Coley
标识
DOI:10.1021/acs.accounts.5c00155
摘要
ConspectusThe advancement of machine learning and the availability of large-scale reaction datasets have accelerated the development of data-driven models for computer-aided synthesis planning (CASP) in the past decade. In this Account, we describe the range of data-driven methods and models that have been incorporated into the newest version of ASKCOS, an open-source software suite for synthesis planning that we have been developing since 2016. This ongoing effort has been driven by the importance of bridging the gap between research and development, making research advances available through a freely available practical tool. ASKCOS integrates modules for retrosynthetic planning, modules for complementary capabilities of condition prediction and reaction product prediction, and several supplementary modules and utilities with various roles in synthesis planning. For retrosynthetic planning, we have developed an Interactive Path Planner (IPP) for user-guided search as well as a Tree Builder for automatic planning with two well-known tree search algorithms, Monte Carlo Tree Search (MCTS) and Retro*. Four one-step retrosynthesis models covering template-based and template-free strategies form the basis of retrosynthetic predictions and can be used simultaneously to combine their advantages and propose diverse suggestions. Strategies for assessing the feasibility of proposed reaction steps and evaluating the full pathways are built on top of several pioneering efforts that we have made in the subtasks of reaction condition recommendation, pathway scoring and clustering, and the prediction of reaction outcomes including the major product, impurities, site selectivity, and regioselectivity. In addition, we have also developed auxiliary capabilities in ASKCOS based on our past and ongoing work for solubility prediction and quantum mechanical descriptor prediction, which can provide more insight into the suitability of proposed reaction solvents or the hypothetical selectivity of desired transformations. For each of these capabilities, we highlight its relevance in the context of synthesis planning and present a comprehensive overview of how it is built on top of not only our work but also of other recent advancements in the field. We also describe in detail how chemists can easily interact with these capabilities via user-friendly interfaces. ASKCOS has assisted hundreds of medicinal, synthetic, and process chemists in their day-to-day tasks by complementing expert decision making and route ideation. It is our belief that CASP tools are an important part of modern chemistry research and offer ever-increasing utility and accessibility.
科研通智能强力驱动
Strongly Powered by AbleSci AI