ASKCOS: Open-Source, Data-Driven Synthesis Planning

开源 计算机科学 化学 数据科学 程序设计语言 软件
作者
Zhengkai Tu,Sourabh J. Choure,Mun Hong Fong,Jihye Roh,Itai Levin,Kevin Yu,Joonyoung F. Joung,Nathan Morgan,Shih‐Cheng Li,Xiaoying Sun,Heshan Lin,Mark Murnin,Jordan P. Liles,Thomas J. Struble,Michael Fortunato,Mengjie Liu,William H. Green,Klavs F. Jensen,Connor W. Coley
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.accounts.5c00155
摘要

ConspectusThe advancement of machine learning and the availability of large-scale reaction datasets have accelerated the development of data-driven models for computer-aided synthesis planning (CASP) in the past decade. In this Account, we describe the range of data-driven methods and models that have been incorporated into the newest version of ASKCOS, an open-source software suite for synthesis planning that we have been developing since 2016. This ongoing effort has been driven by the importance of bridging the gap between research and development, making research advances available through a freely available practical tool. ASKCOS integrates modules for retrosynthetic planning, modules for complementary capabilities of condition prediction and reaction product prediction, and several supplementary modules and utilities with various roles in synthesis planning. For retrosynthetic planning, we have developed an Interactive Path Planner (IPP) for user-guided search as well as a Tree Builder for automatic planning with two well-known tree search algorithms, Monte Carlo Tree Search (MCTS) and Retro*. Four one-step retrosynthesis models covering template-based and template-free strategies form the basis of retrosynthetic predictions and can be used simultaneously to combine their advantages and propose diverse suggestions. Strategies for assessing the feasibility of proposed reaction steps and evaluating the full pathways are built on top of several pioneering efforts that we have made in the subtasks of reaction condition recommendation, pathway scoring and clustering, and the prediction of reaction outcomes including the major product, impurities, site selectivity, and regioselectivity. In addition, we have also developed auxiliary capabilities in ASKCOS based on our past and ongoing work for solubility prediction and quantum mechanical descriptor prediction, which can provide more insight into the suitability of proposed reaction solvents or the hypothetical selectivity of desired transformations. For each of these capabilities, we highlight its relevance in the context of synthesis planning and present a comprehensive overview of how it is built on top of not only our work but also of other recent advancements in the field. We also describe in detail how chemists can easily interact with these capabilities via user-friendly interfaces. ASKCOS has assisted hundreds of medicinal, synthetic, and process chemists in their day-to-day tasks by complementing expert decision making and route ideation. It is our belief that CASP tools are an important part of modern chemistry research and offer ever-increasing utility and accessibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你要好好学习完成签到 ,获得积分10
刚刚
1秒前
WF_Hu发布了新的文献求助10
2秒前
Owen应助研友_nVqwxL采纳,获得10
2秒前
稳重淇完成签到 ,获得积分10
2秒前
Verglilus完成签到,获得积分10
2秒前
缓慢如南应助juju采纳,获得10
2秒前
CR7应助麻果采纳,获得20
2秒前
3秒前
SnaiLinsist发布了新的文献求助20
3秒前
3秒前
gqzszzy完成签到,获得积分10
4秒前
4秒前
丰富山灵发布了新的文献求助10
4秒前
kwen完成签到 ,获得积分10
5秒前
莫里完成签到,获得积分10
5秒前
五百年老中医完成签到,获得积分10
5秒前
5秒前
Bio应助谨慎忆翠采纳,获得30
6秒前
范东辉完成签到,获得积分10
6秒前
贺呵呵完成签到,获得积分10
6秒前
6秒前
雪蛤完成签到,获得积分10
6秒前
部部株式会社完成签到,获得积分10
6秒前
小蘑菇应助书于竹帛采纳,获得10
6秒前
传奇3应助T拐拐采纳,获得10
7秒前
7秒前
bb发布了新的文献求助10
7秒前
菲菲发布了新的文献求助10
7秒前
西北吴彦祖完成签到,获得积分10
8秒前
华仔应助丽颖采纳,获得30
8秒前
潇潇声韵完成签到,获得积分10
8秒前
sc发布了新的文献求助10
8秒前
大力怜容完成签到 ,获得积分10
8秒前
8秒前
9秒前
阿吉泰完成签到,获得积分10
9秒前
9秒前
916应助gqzszzy采纳,获得10
9秒前
在水一方应助可靠的嫣然采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977341
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208902
捐赠科研通 3258622
什么是DOI,文献DOI怎么找? 1799300
邀请新用户注册赠送积分活动 878198
科研通“疑难数据库(出版商)”最低求助积分说明 806810