A Comprehensive Review on RNA Subcellular Localization Prediction.

亚细胞定位 核糖核酸 计算生物学 计算机科学 生物 遗传学 基因
作者
Chi Zhang,Xinyuan Zhu,Nicholas Peterson,Jieqiong Wang,Shibiao Wan
出处
期刊:PubMed
链接
标识
摘要

The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Dr.lee完成签到,获得积分10
1秒前
1秒前
反杀闰土的猹完成签到 ,获得积分10
3秒前
3秒前
huangsi完成签到,获得积分10
3秒前
细水长流发布了新的文献求助10
4秒前
鱼鱼片片发布了新的文献求助20
4秒前
Nights完成签到,获得积分10
4秒前
吕蛋蛋完成签到,获得积分10
5秒前
11111111111发布了新的文献求助10
5秒前
6秒前
6秒前
何1发布了新的文献求助10
7秒前
孟子豪发布了新的文献求助10
7秒前
9秒前
徐慧完成签到,获得积分10
10秒前
Zee发布了新的文献求助10
10秒前
OYWL发布了新的文献求助10
10秒前
善学以致用应助小石头采纳,获得10
11秒前
Jasper应助立军采纳,获得30
11秒前
杰_骜不驯发布了新的文献求助10
11秒前
ZY141319完成签到,获得积分10
12秒前
12秒前
忧虑的羊发布了新的文献求助30
13秒前
Lzx完成签到,获得积分10
13秒前
丘比特应助blueblue采纳,获得10
13秒前
呆萌鱼完成签到,获得积分10
13秒前
shanlu完成签到,获得积分10
14秒前
14秒前
孟子豪完成签到,获得积分10
14秒前
rare完成签到,获得积分10
14秒前
14秒前
咖啡豆完成签到,获得积分10
15秒前
15秒前
hao发布了新的文献求助10
16秒前
mimosal发布了新的文献求助10
16秒前
16秒前
bkagyin应助Bluebulu采纳,获得10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842525
求助须知:如何正确求助?哪些是违规求助? 3384644
关于积分的说明 10536237
捐赠科研通 3105132
什么是DOI,文献DOI怎么找? 1710053
邀请新用户注册赠送积分活动 823486
科研通“疑难数据库(出版商)”最低求助积分说明 774091