Interpretable machine learning method to predict the risk of pre-diabetes using a national-wide cross-sectional data: evidence from CHNS

随机森林 机器学习 医学 可解释性 人工智能 朴素贝叶斯分类器 逻辑回归 支持向量机 Lasso(编程语言) 人工神经网络 糖尿病 公共卫生 计算机科学 内分泌学 护理部 万维网
作者
Xiaolong Li,Fan Ding,Lu Zhang,Shi Zhao,Zengyun Hu,Zhanbing Ma,Li Feng,Yuhong Zhang,Yiyi Zhao,Yu Zhao
出处
期刊:BMC Public Health [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12889-025-22419-7
摘要

Abstract Objective The incidence of Type 2 Diabetes Mellitus (T2DM) continues to rise steadily, significantly impacting human health. Early prediction of pre-diabetic risks has emerged as a crucial public health concern in recent years. Machine learning methods have proven effective in enhancing prediction accuracy. However, existing approaches may lack interpretability regarding underlying mechanisms. Therefore, we aim to employ an interpretable machine learning approach utilizing nationwide cross-sectional data to predict pre-diabetic risk and quantify the impact of potential risks. Methods The LASSO regression algorithm was used to conduct feature selection from 30 factors, ultimately identifying nine non-zero coefficient features associated with pre-diabetes, including age, TG, TC, BMI, Apolipoprotein B, TP, leukocyte count, HDL-C, and hypertension. Various machine learning algorithms, including Extreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), Artificial Neural Networks (ANNs), Decision Trees (DT), and Logistic Regression (LR), were employed to compare predictive performance. Employing an interpretable machine learning approach, we aimed to enhance the accuracy of pre-diabetes risk prediction and quantify the impact and significance of potential risks on pre-diabetes. Results From the China Health and Nutrition Survey (CHNS) data, a cohort of 8,277 individuals was selected, exhibiting a disease prevalence of 7.13%. The XGBoost model demonstrated superior performance with an AUC value of 0.939, surpassing RF, SVM, DT, ANNs, Naive Bayes, and LR models. Additionally, Shapley Additive Explanation (SHAP) analysis indicated that age, BMI, TC, ApoB, TG, hypertension, TP, HDL-C, and WBC may serve as risk factors for pre-diabetes. Conclusion The constructed model comprises nine easily accessible predictive factors, which prove highly effective in forecasting the risk of pre-diabetes. Concurrently, we have quantified the specific impact of each predictive factor on the risk and ranked them based on their influence. This result may serve as a convenient tool for early identification of individuals at high risk of pre-diabetes, providing effective guidance for preventing the progression of pre-diabetes to T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张在努力完成签到,获得积分10
1秒前
三岁居居发布了新的文献求助10
1秒前
聪明完成签到 ,获得积分10
2秒前
zouzou完成签到,获得积分10
9秒前
9秒前
Freya应助xdy1990采纳,获得10
12秒前
13秒前
Zeal完成签到,获得积分10
15秒前
weddcf发布了新的文献求助10
15秒前
圈圈完成签到 ,获得积分10
16秒前
桐桐应助三岁居居采纳,获得10
17秒前
香蕉觅云应助他和她的猫采纳,获得10
18秒前
小马甲应助美丽的又菡采纳,获得10
19秒前
hello11发布了新的文献求助10
19秒前
23秒前
失眠的可乐完成签到,获得积分10
23秒前
TLB完成签到,获得积分10
24秒前
26秒前
26秒前
26秒前
英姑应助turbohero采纳,获得10
27秒前
科研通AI5应助蜗居采纳,获得10
27秒前
29秒前
30秒前
30秒前
xiaolan发布了新的文献求助10
33秒前
Hmzh完成签到,获得积分10
34秒前
35秒前
35秒前
56发布了新的文献求助10
36秒前
轻松初阳完成签到 ,获得积分10
36秒前
达蒙璃完成签到 ,获得积分0
37秒前
暗芒完成签到,获得积分10
37秒前
sheep完成签到,获得积分10
39秒前
蜗居发布了新的文献求助10
40秒前
41秒前
在水一方应助栾小鱼采纳,获得10
41秒前
充电宝应助xiaolan采纳,获得10
42秒前
田様应助紫色系采纳,获得10
42秒前
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979