已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable machine learning method to predict the risk of pre-diabetes using a national-wide cross-sectional data: evidence from CHNS

随机森林 机器学习 医学 可解释性 人工智能 朴素贝叶斯分类器 逻辑回归 支持向量机 Lasso(编程语言) 人工神经网络 糖尿病 公共卫生 计算机科学 内分泌学 万维网 护理部
作者
Xiaolong Li,Fan Ding,Lu Zhang,Shi Zhao,Zengyun Hu,Zhanbing Ma,Li Feng,Yuhong Zhang,Yiyi Zhao,Yu Zhao
出处
期刊:BMC Public Health [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12889-025-22419-7
摘要

Abstract Objective The incidence of Type 2 Diabetes Mellitus (T2DM) continues to rise steadily, significantly impacting human health. Early prediction of pre-diabetic risks has emerged as a crucial public health concern in recent years. Machine learning methods have proven effective in enhancing prediction accuracy. However, existing approaches may lack interpretability regarding underlying mechanisms. Therefore, we aim to employ an interpretable machine learning approach utilizing nationwide cross-sectional data to predict pre-diabetic risk and quantify the impact of potential risks. Methods The LASSO regression algorithm was used to conduct feature selection from 30 factors, ultimately identifying nine non-zero coefficient features associated with pre-diabetes, including age, TG, TC, BMI, Apolipoprotein B, TP, leukocyte count, HDL-C, and hypertension. Various machine learning algorithms, including Extreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), Artificial Neural Networks (ANNs), Decision Trees (DT), and Logistic Regression (LR), were employed to compare predictive performance. Employing an interpretable machine learning approach, we aimed to enhance the accuracy of pre-diabetes risk prediction and quantify the impact and significance of potential risks on pre-diabetes. Results From the China Health and Nutrition Survey (CHNS) data, a cohort of 8,277 individuals was selected, exhibiting a disease prevalence of 7.13%. The XGBoost model demonstrated superior performance with an AUC value of 0.939, surpassing RF, SVM, DT, ANNs, Naive Bayes, and LR models. Additionally, Shapley Additive Explanation (SHAP) analysis indicated that age, BMI, TC, ApoB, TG, hypertension, TP, HDL-C, and WBC may serve as risk factors for pre-diabetes. Conclusion The constructed model comprises nine easily accessible predictive factors, which prove highly effective in forecasting the risk of pre-diabetes. Concurrently, we have quantified the specific impact of each predictive factor on the risk and ranked them based on their influence. This result may serve as a convenient tool for early identification of individuals at high risk of pre-diabetes, providing effective guidance for preventing the progression of pre-diabetes to T2DM.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Herman发布了新的文献求助10
3秒前
酷波er应助klay采纳,获得10
3秒前
Areyouokay发布了新的文献求助10
4秒前
情怀应助随风采纳,获得10
4秒前
5秒前
5秒前
9秒前
dax大雄完成签到 ,获得积分10
10秒前
11秒前
14秒前
哦啦啦发布了新的文献求助10
16秒前
Herman完成签到,获得积分20
18秒前
山竹发布了新的文献求助10
20秒前
舒心的逍遥完成签到,获得积分10
21秒前
姜洋完成签到 ,获得积分10
22秒前
斯文的硬币完成签到 ,获得积分10
24秒前
25秒前
悄悄完成签到 ,获得积分10
26秒前
结实抽屉发布了新的文献求助10
28秒前
ww完成签到 ,获得积分10
28秒前
云霞完成签到 ,获得积分10
29秒前
小新完成签到 ,获得积分10
29秒前
coconut完成签到 ,获得积分10
30秒前
山竹完成签到,获得积分10
30秒前
墨白白发布了新的文献求助10
31秒前
Shandongdaxiu完成签到 ,获得积分10
35秒前
酷炫映阳完成签到 ,获得积分10
37秒前
38秒前
WHY完成签到 ,获得积分10
38秒前
Jasper应助夏宇采纳,获得10
39秒前
xxdmwqxw发布了新的文献求助10
43秒前
wylwyl完成签到,获得积分10
44秒前
英勇初曼发布了新的文献求助10
47秒前
lyy完成签到 ,获得积分10
47秒前
Hsevencc完成签到 ,获得积分10
50秒前
斯文的万恶完成签到,获得积分10
54秒前
xxdmwqxw完成签到,获得积分10
1分钟前
莫力布林完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875420
求助须知:如何正确求助?哪些是违规求助? 6516396
关于积分的说明 15676969
捐赠科研通 4993328
什么是DOI,文献DOI怎么找? 2691456
邀请新用户注册赠送积分活动 1633729
关于科研通互助平台的介绍 1591368