Longitudinal dynamic MRI radiomic models for early prediction of prognosis in locally advanced cervical cancer treated with concurrent chemoradiotherapy

医学 放化疗 磁共振成像 无线电技术 宫颈癌 近距离放射治疗 无进展生存期 放射治疗 放射科 肿瘤科 内科学 总体生存率 癌症
作者
Cai Chang,Ji-Feng Xiao,Rong Cai,Dan Ou,Yiwei Wang,Jiayi Chen,Haoping Xu
出处
期刊:Radiation Oncology [BioMed Central]
卷期号:19 (1)
标识
DOI:10.1186/s13014-024-02574-8
摘要

To investigate the early predictive value of dynamic magnetic resonance imaging (MRI)-based radiomics for progression and prognosis in locally advanced cervical cancer (LACC) patients treated with concurrent chemoradiotherapy (CCRT). A total of 111 LACC patients (training set: 88; test set: 23) were retrospectively enrolled. Dynamic MR images were acquired at baseline (MRIpre), before brachytherapy delivery (MRImid) and at each follow-up visit. Clinical characteristics, 2-year progression-free survival (PFS), and 2-year overall survival (OS) were evaluated. The least absolute shrinkage and selection operator (LASSO) method was applied to extract features from MR images as well as from clinical characteristics. The support vector machine (SVM) model was trained on the training set and then evaluated on the test set. Compared with single-sequence models, multisequence models exhibited superior performance. MRImid-based radiomics models performed better in predicting the prognosis of LACC patients than the post-treatment did. The MRIpre-, MRImid- and the ΔMRImid (variations in radiomics features from MRIpre and MRImid) -based radiomics models achieve AUC scores of 0.723, 0.750 and 0.759 for 2-year PFS and 0.711, 0.737 and 0.789 for 2-year OS in the test set. When combined with the clinical characteristics, the ΔMRImid-based predictive model also performed better than the other models did, with an AUC of 0.812 for progression and 0.868 for survival. We built machine learning models from dynamic features in longitudinal images and found that the ΔMRImid-based model can serve as a non-invasive indicator for the early prediction of prognosis in LACC patients receiving CCRT. The integrated models with clinical characteristics further enhanced the predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助嘟嘟豆806采纳,获得10
1秒前
搜集达人应助BugWriter采纳,获得10
1秒前
橘子皮完成签到,获得积分10
1秒前
明向腾发布了新的文献求助10
2秒前
典雅的俊驰应助李玉兰采纳,获得30
2秒前
CodeCraft应助一兀采纳,获得10
2秒前
风趣问蕊发布了新的文献求助10
3秒前
科研波比关注了科研通微信公众号
3秒前
3秒前
贪玩发布了新的文献求助20
4秒前
4秒前
4秒前
ntfn完成签到,获得积分10
5秒前
Simms完成签到,获得积分10
6秒前
骨科小周完成签到,获得积分10
7秒前
淡淡芷天应助小摆采纳,获得10
8秒前
游阿游发布了新的文献求助10
8秒前
小蘑菇应助xyhua925采纳,获得10
8秒前
13981592626发布了新的文献求助10
8秒前
执着的觅露完成签到 ,获得积分10
9秒前
爆米花应助JUNO采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
千秋梧完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
KKK完成签到,获得积分10
11秒前
风清扬应助一口吸十只猫采纳,获得20
11秒前
小龙女给小龙女的求助进行了留言
11秒前
12秒前
fandada完成签到 ,获得积分10
12秒前
所所应助LL采纳,获得10
12秒前
顾矜应助王贺帅采纳,获得10
12秒前
HeAuBook应助王手采纳,获得20
13秒前
小马甲应助紫川采纳,获得10
13秒前
Zac发布了新的文献求助10
14秒前
14秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343