Longitudinal dynamic MRI radiomic models for early prediction of prognosis in locally advanced cervical cancer treated with concurrent chemoradiotherapy

医学 放化疗 磁共振成像 无线电技术 宫颈癌 近距离放射治疗 无进展生存期 放射治疗 放射科 肿瘤科 内科学 总体生存率 癌症
作者
Cai Chang,Ji-Feng Xiao,Rong Cai,Dan Ou,Yiwei Wang,Jiayi Chen,Haoping Xu
出处
期刊:Radiation Oncology [BioMed Central]
卷期号:19 (1)
标识
DOI:10.1186/s13014-024-02574-8
摘要

To investigate the early predictive value of dynamic magnetic resonance imaging (MRI)-based radiomics for progression and prognosis in locally advanced cervical cancer (LACC) patients treated with concurrent chemoradiotherapy (CCRT). A total of 111 LACC patients (training set: 88; test set: 23) were retrospectively enrolled. Dynamic MR images were acquired at baseline (MRIpre), before brachytherapy delivery (MRImid) and at each follow-up visit. Clinical characteristics, 2-year progression-free survival (PFS), and 2-year overall survival (OS) were evaluated. The least absolute shrinkage and selection operator (LASSO) method was applied to extract features from MR images as well as from clinical characteristics. The support vector machine (SVM) model was trained on the training set and then evaluated on the test set. Compared with single-sequence models, multisequence models exhibited superior performance. MRImid-based radiomics models performed better in predicting the prognosis of LACC patients than the post-treatment did. The MRIpre-, MRImid- and the ΔMRImid (variations in radiomics features from MRIpre and MRImid) -based radiomics models achieve AUC scores of 0.723, 0.750 and 0.759 for 2-year PFS and 0.711, 0.737 and 0.789 for 2-year OS in the test set. When combined with the clinical characteristics, the ΔMRImid-based predictive model also performed better than the other models did, with an AUC of 0.812 for progression and 0.868 for survival. We built machine learning models from dynamic features in longitudinal images and found that the ΔMRImid-based model can serve as a non-invasive indicator for the early prediction of prognosis in LACC patients receiving CCRT. The integrated models with clinical characteristics further enhanced the predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助方小晓采纳,获得10
1秒前
JamesPei应助yangyog采纳,获得10
5秒前
6秒前
隐形曼青应助称心的可乐采纳,获得10
8秒前
wanci应助Milktea123采纳,获得10
10秒前
萱萱完成签到,获得积分10
12秒前
不倦应助杨冰采纳,获得10
13秒前
猫咪老师应助jeeya采纳,获得30
20秒前
22秒前
23秒前
26秒前
沉静傲易完成签到,获得积分10
27秒前
xiao金发布了新的文献求助10
27秒前
杨冰发布了新的文献求助30
27秒前
29秒前
yangyog完成签到,获得积分10
31秒前
LB发布了新的文献求助10
32秒前
黄焖鸡大王完成签到 ,获得积分10
33秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
Lucas应助jitanxiang采纳,获得10
37秒前
linshunan完成签到 ,获得积分10
38秒前
明月半墙发布了新的文献求助10
39秒前
42秒前
43秒前
43秒前
44秒前
汤唯完成签到,获得积分10
46秒前
48秒前
ohenry发布了新的文献求助10
48秒前
wubin69发布了新的文献求助200
49秒前
Ava应助xmhxpz采纳,获得10
49秒前
小慧发布了新的文献求助10
50秒前
归尘发布了新的文献求助10
50秒前
领导范儿应助舒服的惜灵采纳,获得10
50秒前
科研通AI5应助hyh采纳,获得10
53秒前
53秒前
老马哥完成签到 ,获得积分0
54秒前
59秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648