Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization

信息瓶颈法 瓶颈 一般化 图形 不变(物理) 计算机科学 人工智能 数学 理论计算机科学 相互信息 数学分析 数学物理 嵌入式系统
作者
Wenyu Mao,Jiancan Wu,Haoyang Liu,Yongduo Sui,Xiang Wang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2408.01697
摘要

Graph out-of-distribution (OOD) generalization remains a major challenge in graph learning since graph neural networks (GNNs) often suffer from severe performance degradation under distribution shifts. Invariant learning, aiming to extract invariant features across varied distributions, has recently emerged as a promising approach for OOD generation. Despite the great success of invariant learning in OOD problems for Euclidean data (i.e., images), the exploration within graph data remains constrained by the complex nature of graphs. Existing studies, such as data augmentation or causal intervention, either suffer from disruptions to invariance during the graph manipulation process or face reliability issues due to a lack of supervised signals for causal parts. In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL), to extract the invariant features of graphs and enhance models' generalization ability to unseen distributions. Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors. Cooperating with our designed multi-level contrastive learning, we maximize the mutual information among graphs of the same class in the downstream classification tasks, preserving invariant features for prediction to a great extent. An appealing feature of InfoIGL is its strong generalization ability without depending on supervised signal of invariance. Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization for graph classification tasks. The source code is available at https://github.com/maowenyu-11/InfoIGL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miemie66完成签到,获得积分10
1秒前
YingyingFan完成签到,获得积分10
1秒前
阿V完成签到,获得积分10
2秒前
Janice完成签到,获得积分10
2秒前
live完成签到 ,获得积分10
2秒前
667完成签到,获得积分10
3秒前
3秒前
寯齆完成签到,获得积分10
3秒前
3秒前
默默的斑马完成签到,获得积分10
3秒前
小杨完成签到,获得积分10
3秒前
嘻嘻完成签到 ,获得积分10
4秒前
香菜完成签到,获得积分10
5秒前
5秒前
小垃圾10号完成签到,获得积分10
6秒前
吴小利完成签到,获得积分10
6秒前
6秒前
6秒前
魔幻小蚂蚁完成签到,获得积分10
7秒前
科研通AI6应助冒如怿采纳,获得10
8秒前
杨狗蛋完成签到,获得积分20
8秒前
9秒前
零一完成签到,获得积分10
9秒前
科目三应助慧海拾穗采纳,获得10
10秒前
一秒的剧情完成签到,获得积分10
11秒前
害怕的路灯完成签到,获得积分10
11秒前
赵光明完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
a6小神仙完成签到 ,获得积分10
12秒前
WNL完成签到,获得积分10
12秒前
2012csc完成签到 ,获得积分0
12秒前
源西瓜应助一盆多肉采纳,获得20
12秒前
CAI313完成签到,获得积分10
12秒前
自信疾完成签到,获得积分10
12秒前
郑伟李完成签到,获得积分10
12秒前
李健应助nyfz2002采纳,获得10
12秒前
村长热爱美丽完成签到 ,获得积分10
12秒前
mufulee发布了新的文献求助30
12秒前
13秒前
烈阳完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549815
求助须知:如何正确求助?哪些是违规求助? 4634906
关于积分的说明 14636012
捐赠科研通 4576604
什么是DOI,文献DOI怎么找? 2509839
邀请新用户注册赠送积分活动 1485601
关于科研通互助平台的介绍 1456993