Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach

支持向量机 因子(编程语言) 人工智能 模糊逻辑 计算机科学 机器学习 程序设计语言
作者
M. Tanveer,Anushka Tiwari,Mushir Akhtar,Chin‐Teng Lin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.17128
摘要

In real-world applications, class-imbalanced datasets pose significant challenges for machine learning algorithms, such as support vector machines (SVMs), particularly in effectively managing imbalance, noise, and outliers. Fuzzy support vector machines (FSVMs) address class imbalance by assigning varying fuzzy memberships to samples; however, their sensitivity to imbalanced datasets can lead to inaccurate assessments. The recently developed slack-factor-based FSVM (SFFSVM) improves traditional FSVMs by using slack factors to adjust fuzzy memberships based on misclassification likelihood, thereby rectifying misclassifications induced by the hyperplane obtained via different error cost (DEC). Building on SFFSVM, we propose an improved slack-factor-based FSVM (ISFFSVM) that introduces a novel location parameter. This novel parameter significantly advances the model by constraining the DEC hyperplane's extension, thereby mitigating the risk of misclassifying minority class samples. It ensures that majority class samples with slack factor scores approaching the location threshold are assigned lower fuzzy memberships, which enhances the model's discrimination capability. Extensive experimentation on a diverse array of real-world KEEL datasets demonstrates that the proposed ISFFSVM consistently achieves higher F1-scores, Matthews correlation coefficients (MCC), and area under the precision-recall curve (AUC-PR) compared to baseline classifiers. Consequently, the introduction of the location parameter, coupled with the slack-factor-based fuzzy membership, enables ISFFSVM to outperform traditional approaches, particularly in scenarios characterized by severe class disparity. The code for the proposed model is available at \url{https://github.com/mtanveer1/ISFFSVM}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咎星完成签到 ,获得积分10
刚刚
jxc完成签到,获得积分10
刚刚
ydk发布了新的文献求助10
1秒前
hyhyhyhy完成签到,获得积分10
2秒前
2秒前
3秒前
葳蕤完成签到,获得积分10
4秒前
小马甲应助牙线棒棒哒采纳,获得10
4秒前
aa121599发布了新的文献求助20
6秒前
桐桐应助镜哥采纳,获得10
8秒前
思源应助nhh采纳,获得10
9秒前
10秒前
瘦瘦萤发布了新的文献求助10
10秒前
11秒前
++完成签到 ,获得积分10
12秒前
12秒前
斯文败类应助哈哈哈哈采纳,获得10
12秒前
hob发布了新的文献求助10
14秒前
乐乐应助火华采纳,获得10
15秒前
欣喜的书芹完成签到 ,获得积分10
16秒前
张文懿发布了新的文献求助10
17秒前
17秒前
斯文败类应助wyw采纳,获得10
18秒前
18秒前
18秒前
19秒前
烟花应助默默的鬼神采纳,获得30
20秒前
21秒前
山沟沟发布了新的文献求助30
22秒前
MQ完成签到 ,获得积分10
24秒前
nhh发布了新的文献求助10
24秒前
25秒前
出其东门发布了新的文献求助10
27秒前
28秒前
Akim应助Qq采纳,获得10
30秒前
30秒前
wyw发布了新的文献求助10
30秒前
科研小菜鸟完成签到 ,获得积分10
31秒前
32秒前
镜哥发布了新的文献求助10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803756
求助须知:如何正确求助?哪些是违规求助? 3348586
关于积分的说明 10339425
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764096