Inquiry into the Appropriate Data Preprocessing of Electrochemical Impedance Spectroscopy for Machine Learning

介电谱 预处理器 计算机科学 电阻抗 光谱学 材料科学 电化学 数据科学 人工智能 机器学习 心理学 化学 工程类 物理 电气工程 电极 物理化学 量子力学
作者
Jingwen Sun,Weitong Zhang,Yuanzhou Chen,Benjamin B. Hoar,Hongyuan Sheng,Jenny Y. Yang,Quanquan Gu,Chong Liu
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
标识
DOI:10.1021/acs.jpcc.4c06206
摘要

Electrochemical impedance spectroscopy (EIS) is an important analytical technique for the understanding of electrochemical systems. With the recent advent and burgeoning deployment of machine learning (ML) in EIS analysis, a critical yet hitherto unanswered question emerges: what is the appropriate manner to preprocess the EIS data for ML-based analysis? While the preprocessing of a model's input data is known to be critical for a successful deployment of the ML model, EIS is known to possess multiple classical venues of data representation, and moreover, a proper data normalization protocol for comparative EIS studies remains elusive. Here, we report the methodology and the outcomes that evaluate the efficacy of multiple data preprocessing methods in an ML-based EIS analysis. Within our proof-of-concept parameter space, plotting the input training data's impedance magnitude (|Z|) against phase angle (φ) while individually normalizing each EIS curve yields the highest accuracy and robustness in the correspondingly established residual neural network (ResNet) model. Rationalized by additional "importance" analysis of the input data, such a data representation method extracts information and hidden features more effectively. While the Nyquist plot is widely used in manual analysis, a different data representation of EIS data seems equally plausible for ML-based EIS analysis. Our work offers a protocol for future researchers to decide on the proper preprocessing method for different ML applications in electrochemistry on a case-by-case basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
忧伤的冰薇完成签到 ,获得积分10
2秒前
zeno123456完成签到,获得积分10
5秒前
6秒前
Kiki发布了新的文献求助10
7秒前
du完成签到 ,获得积分10
7秒前
求学路上完成签到,获得积分10
7秒前
xxxxxxlp完成签到,获得积分10
9秒前
季夏十六发布了新的文献求助10
10秒前
大个应助12采纳,获得10
10秒前
二兔子完成签到,获得积分10
12秒前
背后的大米完成签到,获得积分10
12秒前
所所应助Aria采纳,获得30
12秒前
善学以致用应助Jane采纳,获得30
13秒前
lojack完成签到,获得积分10
13秒前
14秒前
min完成签到,获得积分10
14秒前
愤怒的卓越完成签到,获得积分10
15秒前
Felly完成签到 ,获得积分10
16秒前
16秒前
Zhidong Wei发布了新的文献求助10
20秒前
21秒前
朴素的擎苍完成签到 ,获得积分10
22秒前
Dawn完成签到 ,获得积分10
22秒前
爆米花应助魔幻凝云采纳,获得10
24秒前
xiaojiu完成签到,获得积分10
24秒前
Jane发布了新的文献求助30
26秒前
缓慢采柳给缓慢采柳的求助进行了留言
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI5应助wu采纳,获得10
31秒前
ZZ完成签到,获得积分10
32秒前
小蘑菇应助李某某采纳,获得10
33秒前
归尘发布了新的文献求助10
33秒前
科研小牛马完成签到,获得积分10
37秒前
慢慢人完成签到,获得积分10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320