Study on corrosion monitoring and assessment method of reinforced concrete based on multi-sensor fusion

腐蚀 融合 材料科学 传感器融合 腐蚀监测 钢筋混凝土 计算机科学 结构工程 工程类 复合材料 人工智能 语言学 哲学
作者
Xumei Lin,Peng Wang,Shiyuan Wang,Jiahui Shen
出处
期刊:Anti-corrosion Methods and Materials [Emerald Publishing Limited]
标识
DOI:10.1108/acmm-10-2024-3121
摘要

Purpose The purpose of this paper is to investigate the accurate monitoring and assessment of steel bar corrosion in concrete based on deep learning multi-sensor information fusion method. The paper addresses the issue of traditional corrosion assessment models relying on sufficient data volume and low evaluation accuracy under small sample conditions. Design/methodology/approach A multi-sensor integrated corrosion monitoring equipment for reinforced concrete is designed to detect corrosion parameters such as corrosion potential, current, impedance, electromagnetic signal and steel bar stress, as well as environmental parameters such as internal temperature, humidity and chloride ion concentration of concrete. To overcome the small amount of monitoring data and improve the accuracy of evaluation, an improved Siamese neural network based on the attention mechanism and multi-loss fusion function is proposed to establish a corrosion evaluation model suitable for small sample data. Findings The corrosion assessment model has an accuracy of 98.41%, which is 20% more accurate than traditional models. Practical implications Timely maintenance of buildings according to corrosion evaluation results can improve maintenance efficiency and reduce maintenance costs, which is of great significance to ensure structural safety. Originality/value The corrosion monitoring equipment for reinforced concrete designed in this paper can realize the whole process of monitoring inside the concrete. The proposed corrosion evaluation model for reinforced concrete based on Siamese neural network has high accuracy and can provide a more accurate assessment model for structural health testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助zheng_chen采纳,获得10
刚刚
桐桐应助zheng_chen采纳,获得10
刚刚
科研通AI6应助zheng_chen采纳,获得10
刚刚
善学以致用应助zheng_chen采纳,获得30
刚刚
Owen应助zheng_chen采纳,获得10
刚刚
隐形又柔发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助小罗采纳,获得10
8秒前
俊秀的半雪完成签到,获得积分10
8秒前
9秒前
Komorebi完成签到 ,获得积分10
12秒前
周小鱼发布了新的文献求助10
12秒前
c1302128340完成签到,获得积分10
13秒前
14秒前
15秒前
搜集达人应助亓昂采纳,获得10
15秒前
16秒前
科研通AI5应助yeyeye采纳,获得30
20秒前
pphss完成签到,获得积分10
20秒前
科目三应助学术射手采纳,获得50
22秒前
26秒前
梦想完成签到,获得积分10
28秒前
29秒前
Tony12发布了新的文献求助10
32秒前
Owen应助金三顺采纳,获得10
34秒前
比比完成签到 ,获得积分10
35秒前
35秒前
36秒前
跳跃的语雪完成签到,获得积分20
36秒前
39秒前
abb完成签到,获得积分10
39秒前
yu完成签到,获得积分20
40秒前
zhao完成签到 ,获得积分10
41秒前
Gates发布了新的文献求助10
41秒前
小罗发布了新的文献求助10
42秒前
yu发布了新的文献求助10
42秒前
zhaopeipei发布了新的文献求助10
42秒前
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537055
求助须知:如何正确求助?哪些是违规求助? 3972128
关于积分的说明 12305419
捐赠科研通 3638852
什么是DOI,文献DOI怎么找? 2003525
邀请新用户注册赠送积分活动 1038901
科研通“疑难数据库(出版商)”最低求助积分说明 928336