Study on corrosion monitoring and assessment method of reinforced concrete based on multi-sensor fusion

腐蚀 融合 材料科学 传感器融合 腐蚀监测 钢筋混凝土 计算机科学 结构工程 工程类 复合材料 人工智能 哲学 语言学
作者
Xumei Lin,Peng Wang,Shiyuan Wang,Jiahui Shen
出处
期刊:Anti-corrosion Methods and Materials [Emerald Publishing Limited]
标识
DOI:10.1108/acmm-10-2024-3121
摘要

Purpose The purpose of this paper is to investigate the accurate monitoring and assessment of steel bar corrosion in concrete based on deep learning multi-sensor information fusion method. The paper addresses the issue of traditional corrosion assessment models relying on sufficient data volume and low evaluation accuracy under small sample conditions. Design/methodology/approach A multi-sensor integrated corrosion monitoring equipment for reinforced concrete is designed to detect corrosion parameters such as corrosion potential, current, impedance, electromagnetic signal and steel bar stress, as well as environmental parameters such as internal temperature, humidity and chloride ion concentration of concrete. To overcome the small amount of monitoring data and improve the accuracy of evaluation, an improved Siamese neural network based on the attention mechanism and multi-loss fusion function is proposed to establish a corrosion evaluation model suitable for small sample data. Findings The corrosion assessment model has an accuracy of 98.41%, which is 20% more accurate than traditional models. Practical implications Timely maintenance of buildings according to corrosion evaluation results can improve maintenance efficiency and reduce maintenance costs, which is of great significance to ensure structural safety. Originality/value The corrosion monitoring equipment for reinforced concrete designed in this paper can realize the whole process of monitoring inside the concrete. The proposed corrosion evaluation model for reinforced concrete based on Siamese neural network has high accuracy and can provide a more accurate assessment model for structural health testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的向梦完成签到,获得积分10
刚刚
yang123完成签到,获得积分10
1秒前
科研通AI5应助大反应釜采纳,获得10
1秒前
太微关注了科研通微信公众号
2秒前
abc123完成签到,获得积分10
3秒前
李健的小迷弟应助苏格采纳,获得10
3秒前
JamesPei应助白露为霜采纳,获得10
4秒前
xianjingli发布了新的文献求助10
4秒前
领导范儿应助messi0731采纳,获得10
5秒前
生尽证提完成签到,获得积分10
7秒前
科研通AI2S应助JankinWen采纳,获得10
7秒前
8秒前
田所浩二完成签到 ,获得积分10
8秒前
喏晨完成签到 ,获得积分10
8秒前
彩色的芝麻完成签到 ,获得积分10
9秒前
沉默的便当完成签到,获得积分10
10秒前
11秒前
12秒前
qiu发布了新的文献求助10
14秒前
15秒前
昏睡的蟠桃给无机盐的求助进行了留言
15秒前
Jro发布了新的文献求助10
16秒前
领导范儿应助狐狐采纳,获得10
16秒前
元谷雪发布了新的文献求助10
16秒前
17秒前
17秒前
Paula_xr发布了新的文献求助10
17秒前
快乐芷珊完成签到,获得积分10
17秒前
花成花完成签到,获得积分10
19秒前
出其东门完成签到,获得积分10
20秒前
20秒前
yang123发布了新的文献求助10
21秒前
端木发布了新的文献求助10
22秒前
23秒前
肖耶啵发布了新的文献求助10
23秒前
害羞乌冬面完成签到,获得积分20
24秒前
干破天完成签到 ,获得积分10
25秒前
26秒前
鲤鱼白枫完成签到,获得积分10
28秒前
共享精神应助肖耶啵采纳,获得10
29秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Handbook of Material Weathering 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831477
求助须知:如何正确求助?哪些是违规求助? 3373663
关于积分的说明 10480971
捐赠科研通 3093648
什么是DOI,文献DOI怎么找? 1702873
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771284