亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the Effectiveness of Low-Energy Ions, an Extension of the Local Effect Model

作者
K. Sennhenn,M. Scholz,Thomas Friedrich
出处
期刊:Radiation Research [BioOne (Radiation Research Society)]
标识
DOI:10.1667/rade-25-00008.1
摘要

In the field of radiation physics, understanding the impact of low-energy ions with high-linear energy transfer (LET) is crucial for assessing both radiation protection and particle therapy risks. However, predicting their biological effectiveness is challenging, because commonly assumed track-segment conditions, where ions maintain a constant LET and energy, no longer hold at low energies. Additionally, as ion track sizes shrink to the scale of chromatin structures, inhomogeneities within the cell nucleus can be resolved and the assumption of a uniformly sensitive nucleus becomes inadequate. To address these challenges, we present a low-energy adaption (LEA) of the local effect model (LEM IV), which introduces three key modifications: 1. modeling ion deceleration within the cell nucleus by dividing it into discrete slices to account for energy and LET gradients; 2. incorporating a heterogeneous target structure by distinguishing between radiation-sensitive and insensitive chromatin domains; 3. a more accurate prediction of the linear-quadratic parameter by introducing a saturation correction for very high LET. Our results demonstrate that the LEA LEM IV notably improves predictive accuracy at low ion energies. With these adaptions, the LEA successfully reflects the reduced inactivation cross sections observed experimentally, which remain below the geometric cross section of the nucleus. The model shows good agreement with three sets of experimental data, including inactivation cross sections for carbon, argon, and uranium ions, as well as values for alpha particles. While computationally more intensive, the LEA provides a crucial tool for precise modeling in low-energy scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
40秒前
445hhj发布了新的文献求助10
1分钟前
1分钟前
寻道图强应助Wei采纳,获得50
1分钟前
2分钟前
2分钟前
刘可可可发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
445hhj完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
天天开心最重要完成签到,获得积分20
4分钟前
4分钟前
我不爱吃红苹果完成签到,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
7分钟前
小白加油完成签到 ,获得积分10
8分钟前
科研通AI6应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助zy采纳,获得10
9分钟前
9分钟前
zy发布了新的文献求助10
9分钟前
9分钟前
9分钟前
9分钟前
9分钟前
10分钟前
10分钟前
caspar完成签到,获得积分10
10分钟前
10分钟前
10分钟前
10分钟前
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595751
求助须知:如何正确求助?哪些是违规求助? 4680984
关于积分的说明 14818206
捐赠科研通 4653030
什么是DOI,文献DOI怎么找? 2535669
邀请新用户注册赠送积分活动 1503553
关于科研通互助平台的介绍 1469764