Continuous Physiologic Markers of Heart Rate Variability Derived From Bedside Electrocardiogram Precede Onset of Acute Respiratory Distress Syndrome: A Physiologic Modeling Study

作者
Curtis Marshall,Haoming Shi,Ayman Ali,Victor M. Moas,Carolyn Davis,Jeffrey Wang,Saideep Narendrula,Joao Gabriel De Souza Vale,J. Song,Hayoung Jeong,Preethi Krishnan,A. Gent,Simon Tallowin,Felipe Lisboa,Seth Schobel,Eric A. Elster,T. Buchmann,Christopher J. Dente,Philip Yang,Rishikesan Kamaleswaran
出处
期刊:Critical care explorations [Ovid Technologies (Wolters Kluwer)]
卷期号:7 (12): e1352-e1352
标识
DOI:10.1097/cce.0000000000001352
摘要

OBJECTIVE: Acute respiratory distress syndrome (ARDS) is estimated to be prevalent in 10% of ICU patients and results in high mortality rates of up to 45%. The recognition of ARDS can be complex and is often delayed or missed entirely. Recognition of increased ARDS risk among critically ill patients may prompt judicious care management strategies and initiation of preventative therapies known to improve survival. DESIGN: Retrospective observational cohort study. SETTING: In-patient tertiary hospital. PATIENTS: Among 1160 patients (2017–2018), 761 had adequate duration and quality of monitoring waveform data for analysis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: This is an observational, retrospective, institutional review board-approved study of patients admitted to ICUs at a tertiary hospital system. Physiologic data were captured among critically ill patients who developed ARDS ( n = 62) and matched controls ( n = 699) during their hospitalization. Machine learning algorithms were evaluated against statistical features from continuous electrocardiogram (ECG) and sparse clinical data. Waveform-derived cardiorespiratory features, namely measures relating to heart rate variability were found to be robust and reliable features that predicted ARDS up to 2 days before onset. The combined model consisting of waveform features and clinical data with 12-hour prediction horizon achieved an area under the receiver operating characteristic curve and positive predictive value of 0.92 (95% CI, 0.91–0.93) and 0.58 (95% CI, 0.55–0.62), surpassing a model with the clinical data removed (0.86 [95% CI, 0.85–0.88] and 0.49 [95% CI, 0.46–0.52]) and the Lung Injury Prediction Score’s maximum of 0.88 and 0.18. CONCLUSIONS: Waveform markers can combine with Electronic Medical Records (EMR) data to improve predictability of ARDS before onset. The markers appear to modulate the sparser EMR data. They also provide, in and of themselves, sufficient dynamical information for comparable results to models with EMR data. Further prospective validation is needed to evaluate the robustness of the model and potential clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗dd发布了新的文献求助10
刚刚
Jasper应助jiang采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
JamesPei应助静注氯化钾采纳,获得10
1秒前
nuaa_shy应助橙子采纳,获得10
1秒前
tu完成签到 ,获得积分10
1秒前
cllg完成签到,获得积分10
1秒前
1秒前
papa完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
Kaka完成签到,获得积分10
3秒前
zgxzgx完成签到,获得积分10
3秒前
Hello应助不科研的鱼采纳,获得10
4秒前
TMY发布了新的文献求助10
4秒前
4秒前
23发布了新的文献求助10
4秒前
瑁mao完成签到 ,获得积分10
5秒前
文鸯完成签到,获得积分10
5秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
6秒前
Twonej应助马格采纳,获得30
6秒前
田様应助生生不息采纳,获得10
7秒前
7秒前
迷路冰双发布了新的文献求助10
7秒前
jeanalist发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
Zion完成签到,获得积分0
8秒前
9秒前
lzl完成签到,获得积分10
9秒前
任慧晶发布了新的文献求助10
9秒前
123发布了新的文献求助80
9秒前
woo应助luotuo采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805