已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigation of vortex characteristics and energy dissipation mechanisms in the high-shear-stress flow fields of blood-handling devices

作者
Zheqin Yu,Jin Liu,Jianping Tan,Zhiyong Xiao,Yuanying Du
出处
期刊:International Journal of Artificial Organs [SAGE]
卷期号:: 3913988251401780-3913988251401780
标识
DOI:10.1177/03913988251401780
摘要

Blood-handling devices are commonly used for blood transportation or regulation, but their specialized flow channel geometries tend to create high-shear-stress flow regimes, which may induce excessive cellular damage risks and energy dissipation. To address this, this study combines computational fluid dynamics and particle image velocimetry experimental methods to establish nozzle reference models with multiple orifice diameter configurations. Based on entropy generation theory and Ω vortex identification methods, the underlying energy dissipation mechanisms and vortex dynamics under distinct high-shear-stress conditions are analyzed. The results indicate that shear flow intensity is highly correlated with energy dissipation due to entropy production. Attenuating turbulence in the flow field simultaneously suppresses shear stress damage and energy loss, while lowering shear flow intensity promotes the decomposition of vortices downstream, broadening their spatial distribution. High flow velocity alone does not directly induce shear stress or entropy-related energy dissipation; rather, an excessively steep velocity gradient is the primary factor affecting flow field safety and efficiency. A 94% rise in velocity gradient results in average increases of 97.6% in shear stress and 99.6% in energy entropy production. During flow regime transition or under pronounced velocity gradients, shear-dominated vortices readily form and generate vortex-like energy dissipation during evolution, which is a key factor exacerbating energy loss in high-shear-stress flow fields. This study elucidates the energy dissipation mechanisms and vortex dynamics in high-shear-stress flow fields of blood-handling devices, providing theoretical and technical support for optimizing flow fields and performance in relevant devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
萧寒发布了新的文献求助10
1秒前
2秒前
深情安青应助xiaoyuzhou采纳,获得10
3秒前
htt发布了新的文献求助10
3秒前
4秒前
周济完成签到,获得积分20
5秒前
123y发布了新的文献求助10
5秒前
fanfan发布了新的文献求助10
6秒前
7秒前
开心惜梦发布了新的文献求助50
9秒前
Rain完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
积极的明天完成签到,获得积分10
11秒前
Maria完成签到 ,获得积分10
11秒前
11秒前
海贵完成签到,获得积分10
11秒前
JAJATAO发布了新的文献求助10
12秒前
打打应助ZHAO采纳,获得10
13秒前
14秒前
丑小鸭发布了新的文献求助10
14秒前
英姑应助YMing采纳,获得10
14秒前
俭朴的跳跳糖完成签到 ,获得积分10
14秒前
15秒前
15秒前
小谢完成签到 ,获得积分10
16秒前
18秒前
nono完成签到 ,获得积分10
18秒前
千诺完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
柚哦发布了新的文献求助10
21秒前
Twonej应助automan采纳,获得50
22秒前
浮游应助科研通管家采纳,获得10
23秒前
归尘发布了新的文献求助10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620