亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images

人工智能 计算机科学 机器学习 稳健性(进化) 深度学习 对抗制 监督学习 半监督学习 事件(粒子物理) 人工神经网络 生物化学 量子力学 基因 物理 化学
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103020-103020 被引量:18
标识
DOI:10.1016/j.media.2023.103020
摘要

The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
36秒前
老石完成签到 ,获得积分10
47秒前
556发布了新的文献求助30
49秒前
53秒前
搜集达人应助kmkm采纳,获得10
55秒前
邬化蛹发布了新的文献求助10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
kmkm关注了科研通微信公众号
2分钟前
2分钟前
ckyyds完成签到 ,获得积分10
2分钟前
2分钟前
yuqinghui98完成签到 ,获得积分10
2分钟前
kmkm发布了新的文献求助10
2分钟前
111完成签到 ,获得积分10
2分钟前
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
3分钟前
Aurora完成签到 ,获得积分10
3分钟前
4分钟前
kmkm完成签到,获得积分10
4分钟前
4分钟前
4分钟前
无情听南完成签到,获得积分10
4分钟前
5分钟前
赘婿应助米歇尔采纳,获得10
5分钟前
5分钟前
5分钟前
传奇3应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
5分钟前
米歇尔发布了新的文献求助10
5分钟前
称心芷巧发布了新的文献求助30
5分钟前
米歇尔完成签到,获得积分20
6分钟前
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155694
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216