Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review

断层(地质) 时频分析 特征提取 计算机科学 信号处理 控制工程 解调 工程类 人工智能 电子工程 计算机视觉 数字信号处理 计算机网络 频道(广播) 滤波器(信号处理) 地震学 地质学
作者
Dongdong Liu,Lingli Cui,Huaqing Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (24): 29969-29990 被引量:143
标识
DOI:10.1109/jsen.2023.3326112
摘要

Rotating machinery often works under time-varying speeds, and nonstationary conditions as well as harsh environments make its key parts, such as rolling bearings and gears, prone to faults. Therefore, a number of fault diagnosis methods including nonstationary signal processing methods and data-driven methods have been developed. This paper presents a comprehensive review on the fault diagnosis of rotating machinery under time-varying speeds proposed mainly during the last five years. First, spectrum analysis-based methods, including order tracking, cyclic spectrum correlation and generalized demodulation, are reviewed. Second, the time-frequency analysis (TFA) methods in machinery fault diagnosis are divided into postprocessing methods and chirplet transform-based methods and are reviewed. Then, the artificial feature extraction- and deep learning-enabled intelligent diagnosis methods proposed specifically for time-varying speed conditions are reviewed. Finally, the research prospects are discussed. We not only review the relevant state-of-art methods and analyze how they overcome the problems caused by speed fluctuations but also discuss their advantages and disadvantages as well as the challenges that will be encountered when applying them to industrial applications. This paper is expected to provide new graduate students, institutions and companies with a preliminary understanding of the methods on this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助冰bing采纳,获得10
1秒前
文德先生完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
嘎嘣脆发布了新的文献求助10
5秒前
香冢弃了残红完成签到,获得积分10
5秒前
椎名hirofumi完成签到 ,获得积分10
5秒前
lucky完成签到 ,获得积分10
6秒前
重要涔雨完成签到,获得积分10
6秒前
顾矜应助嘻嘻采纳,获得10
6秒前
李爱国应助Ashley采纳,获得10
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
8秒前
子车定帮发布了新的文献求助10
9秒前
单纯的手机完成签到,获得积分10
9秒前
chen发布了新的文献求助10
10秒前
xiaomu发布了新的文献求助10
11秒前
11秒前
11秒前
11231发布了新的文献求助10
12秒前
13秒前
nzz发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
威fly完成签到,获得积分10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
柚子发布了新的文献求助10
17秒前
17秒前
Jason发布了新的文献求助10
17秒前
CC发布了新的文献求助10
18秒前
邪恶板凳发布了新的文献求助10
18秒前
义气的代曼完成签到,获得积分10
19秒前
雨堂完成签到,获得积分10
19秒前
20秒前
彭于晏应助olaolaby采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5820766
求助须知:如何正确求助?哪些是违规求助? 5969452
关于积分的说明 15555870
捐赠科研通 4942438
什么是DOI,文献DOI怎么找? 2662132
邀请新用户注册赠送积分活动 1608274
关于科研通互助平台的介绍 1563265