Applications of artificial intelligence and machine learning in dynamic pathway engineering

合成生物学 计算机科学 代谢工程 人工智能 组分(热力学) 功能(生物学) 领域(数学) 机器学习 计算生物学 生物 生物化学 物理 进化生物学 热力学 数学 纯数学
作者
Charlotte Merzbacher,Diego A. Oyarzún
出处
期刊:Biochemical Society Transactions [Portland Press]
标识
DOI:10.1042/bst20221542
摘要

Dynamic pathway engineering aims to build metabolic production systems embedded with intracellular control mechanisms for improved performance. These control systems enable host cells to self-regulate the temporal activity of a production pathway in response to perturbations, using a combination of biosensors and feedback circuits for controlling expression of heterologous enzymes. Pathway design, however, requires assembling together multiple biological parts into suitable circuit architectures, as well as careful calibration of the function of each component. This results in a large design space that is costly to navigate through experimentation alone. Methods from artificial intelligence (AI) and machine learning are gaining increasing attention as tools to accelerate the design cycle, owing to their ability to identify hidden patterns in data and rapidly screen through large collections of designs. In this review, we discuss recent developments in the application of machine learning methods to the design of dynamic pathways and their components. We cover recent successes and offer perspectives for future developments in the field. The integration of AI into metabolic engineering pipelines offers great opportunities to streamline design and discover control systems for improved production of high-value chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助江月年采纳,获得10
1秒前
小蘑菇应助虚拟的惜筠采纳,获得10
1秒前
饿哭了塞发布了新的文献求助10
1秒前
优秀冰真完成签到,获得积分10
1秒前
2秒前
QSJ发布了新的文献求助10
2秒前
奋斗蜗牛完成签到,获得积分10
3秒前
烟花应助尹雪儿采纳,获得10
3秒前
谨慎乌完成签到,获得积分10
4秒前
4秒前
jjleborn发布了新的文献求助10
4秒前
善学以致用应助万历采纳,获得10
5秒前
LLxiaolong完成签到,获得积分10
5秒前
6秒前
耍酷的白玉完成签到,获得积分10
6秒前
科研通AI5应助积极的惜萱采纳,获得10
7秒前
wzppp发布了新的文献求助10
8秒前
田様应助helloworld采纳,获得10
8秒前
kaka发布了新的文献求助10
8秒前
9秒前
搜集达人应助H1采纳,获得10
9秒前
莫之玉完成签到 ,获得积分20
9秒前
唯爱薇儿完成签到,获得积分10
9秒前
10秒前
天天快乐应助贺知什么书采纳,获得10
10秒前
neko完成签到,获得积分10
10秒前
11秒前
凯凯完成签到,获得积分10
11秒前
11秒前
Serendipity发布了新的文献求助10
11秒前
11秒前
晴心发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
冰魂应助负责的方盒采纳,获得10
13秒前
科研通AI5应助wzppp采纳,获得10
13秒前
14秒前
尹雪儿发布了新的文献求助10
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432