Damage localization using acoustic emission sensors via convolutional neural network and continuous wavelet transform

声发射 卷积神经网络 小波变换 计算机科学 小波 连续小波变换 时域 声学 信号(编程语言) 过程(计算) 人工智能 模式识别(心理学) 离散小波变换 计算机视觉 物理 操作系统 程序设计语言
作者
Van Vy,Yunwoo Lee,JinYeong Bak,Solmoi Park,Seunghee Park,Hyungchul Yoon
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:204: 110831-110831 被引量:25
标识
DOI:10.1016/j.ymssp.2023.110831
摘要

Due to aging structures, deterioration is becoming an essential issue in the engineering and facility management industry. Especially for nuclear power plants, the deterioration of structures could be directly related to safety issues. One of the popular methods for localizing damage such as cracks in nuclear power plants in the early stage is using acoustic emission sensors. The conventional methods for localizing damage using the acoustic emission sensor include methods such as time of arrival, time difference of arrival, and received signal strength indicator measurements. However, the conventional methods have large errors especially when the material is not homogeneous, or the propagation path of signals is non-straight. In this study, we propose a new deep learning-based damage localization method using acoustic emission sensors to automate the damage localization process and improve accuracy. First, the signals from acoustic emission sensors were collected and transformed into time–frequency domain images using continuous wavelet transform. Next, the convolutional neural networks were designed to localize the damage using the continuous wavelet transform images as the input. Finally, the trained convolutional neural networks were used to estimate the location or coordinates of damages. To validate the performance of the proposed method, experimental tests were conducted in the concrete panel and cube with artificially generated damages. The results express that the proposed method is effective and progressive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阔达的哲瀚应助糖布里部采纳,获得10
1秒前
稳重十三完成签到,获得积分10
1秒前
笑呵呵发布了新的文献求助50
3秒前
3秒前
白青完成签到,获得积分10
3秒前
老魏完成签到 ,获得积分10
3秒前
zj1900完成签到,获得积分20
3秒前
Wyattl发布了新的文献求助10
3秒前
巴啦啦能量完成签到,获得积分10
3秒前
4秒前
琪琪发布了新的文献求助10
5秒前
5秒前
5秒前
搞怪藏今完成签到,获得积分10
6秒前
KellyJ完成签到,获得积分10
7秒前
呆萌幻竹完成签到,获得积分10
7秒前
忧虑的乐驹完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
qly发布了新的文献求助10
8秒前
丘比特应助Jolin采纳,获得10
8秒前
小本完成签到,获得积分10
8秒前
8秒前
9秒前
HHHHHN发布了新的文献求助10
9秒前
9秒前
Jasper应助乐观的雅彤采纳,获得10
10秒前
11秒前
兔农糖完成签到,获得积分10
11秒前
三岁完成签到 ,获得积分10
11秒前
11秒前
12秒前
玛卡巴卡发布了新的文献求助10
13秒前
凡一朵发布了新的文献求助10
13秒前
Wyattl完成签到,获得积分10
14秒前
14秒前
zz发布了新的文献求助10
14秒前
梅TiAmo发布了新的文献求助10
14秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Learning to Listen, Listening to Learn: Music Perception and the Psychology of Enculturation 700
全球膝关节骨性关节炎市场研究报告 555
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3895259
求助须知:如何正确求助?哪些是违规求助? 3439250
关于积分的说明 10811274
捐赠科研通 3164101
什么是DOI,文献DOI怎么找? 1747939
邀请新用户注册赠送积分活动 844324
科研通“疑难数据库(出版商)”最低求助积分说明 787928