Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection

计算机科学 异常检测 人工智能 卷积神经网络 模式识别(心理学) 监督学习 深度学习 块(置换群论) 变压器 计算机视觉 机器学习 人工神经网络 工程类 数学 电气工程 电压 几何学
作者
Neelu Madan,Nicolae-Cătălin Ristea,Radu Tudor Ionescu,Kamal Nasrollahi,Fahad Shahbaz Khan,Thomas B. Moeslund,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (1): 525-542 被引量:37
标识
DOI:10.1109/tpami.2023.3322604
摘要

Anomaly detection has recently gained increasing attention in the field of computer vision, likely due to its broad set of applications ranging from product fault detection on industrial production lines and impending event detection in video surveillance to finding lesions in medical scans. Regardless of the domain, anomaly detection is typically framed as a one-class classification task, where the learning is conducted on normal examples only. An entire family of successful anomaly detection methods is based on learning to reconstruct masked normal inputs (e.g. patches, future frames, etc.) and exerting the magnitude of the reconstruction error as an indicator for the abnormality level. Unlike other reconstruction-based methods, we present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level. The proposed self-supervised block is extremely flexible, enabling information masking at any layer of a neural network and being compatible with a wide range of neural architectures. In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss. Furthermore, we show that our block is applicable to a wider variety of tasks, adding anomaly detection in medical images and thermal videos to the previously considered tasks based on RGB images and surveillance videos. We exhibit the generality and flexibility of SSMCTB by integrating it into multiple state-of-the-art neural models for anomaly detection, bringing forth empirical results that confirm considerable performance improvements on five benchmarks: MVTec AD, BRATS, Avenue, ShanghaiTech, and Thermal Rare Event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
刚刚
Yue发布了新的文献求助10
刚刚
mm_zxh完成签到,获得积分10
1秒前
Soir完成签到 ,获得积分10
1秒前
1秒前
2秒前
pearsir完成签到,获得积分10
2秒前
AdoreU完成签到,获得积分10
2秒前
3秒前
星辰大海应助tjzhaoll采纳,获得10
4秒前
科研通AI5应助Nancy采纳,获得10
4秒前
木言发布了新的文献求助10
4秒前
叶颤完成签到,获得积分10
4秒前
4秒前
科目三应助xy采纳,获得10
4秒前
5秒前
谭豆豆发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
要受到80斤完成签到,获得积分10
7秒前
8秒前
温冠儒发布了新的文献求助10
8秒前
奋斗的绿海完成签到,获得积分10
9秒前
科研通AI5应助freshfire采纳,获得10
9秒前
9秒前
cyndi发布了新的文献求助10
10秒前
无限雨南发布了新的文献求助10
10秒前
10秒前
萧羊青完成签到,获得积分10
10秒前
玩命的马里奥完成签到,获得积分10
10秒前
daorenz完成签到,获得积分20
11秒前
木言完成签到,获得积分10
12秒前
小吕小吕发布了新的文献求助10
12秒前
12秒前
风中的小蝴蝶完成签到,获得积分10
12秒前
12秒前
13秒前
旷野完成签到,获得积分10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775