已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation With Transformers

RGB颜色模型 人工智能 分割 模态(人机交互) 计算机科学 计算机视觉 激光雷达 特征(语言学) 模式识别(心理学) 遥感 地理 语言学 哲学
作者
Jiaming Zhang,Huayao Liu,Kailun Yang,Xinxin Hu,Ruiping Liu,Rainer Stiefelhagen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 14679-14694 被引量:472
标识
DOI:10.1109/tits.2023.3300537
摘要

Scene understanding based on image segmentation is a crucial component of autonomous vehicles. Pixel-wise semantic segmentation of RGB images can be advanced by exploiting complementary features from the supplementary modality ( ${X}$ -modality). However, covering a wide variety of sensors with a modality-agnostic model remains an unresolved problem due to variations in sensor characteristics among different modalities. Unlike previous modality-specific methods, in this work, we propose a unified fusion framework, CMX, for RGB-X semantic segmentation. To generalize well across different modalities, that often include supplements as well as uncertainties, a unified cross-modal interaction is crucial for modality fusion. Specifically, we design a Cross-Modal Feature Rectification Module (CM-FRM) to calibrate bi-modal features by leveraging the features from one modality to rectify the features of the other modality. With rectified feature pairs, we deploy a Feature Fusion Module (FFM) to perform sufficient exchange of long-range contexts before mixing. To verify CMX, for the first time, we unify five modalities complementary to RGB, i.e., depth, thermal, polarization, event, and LiDAR. Extensive experiments show that CMX generalizes well to diverse multi-modal fusion, achieving state-of-the-art performances on five RGB-Depth benchmarks, as well as RGB-Thermal, RGB-Polarization, and RGB-LiDAR datasets. Besides, to investigate the generalizability to dense-sparse data fusion, we establish an RGB-Event semantic segmentation benchmark based on the EventScape dataset, on which CMX sets the new state-of-the-art. The source code of CMX is publicly available at https://github.com/huaaaliu/RGBX_Semantic_ Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助SS2D采纳,获得10
1秒前
2秒前
wen发布了新的文献求助30
2秒前
3秒前
慕青应助圆仔采纳,获得10
3秒前
李健应助风中小刺猬采纳,获得10
3秒前
机智的宝儿姐完成签到 ,获得积分10
5秒前
5秒前
Hannah完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
阿晨发布了新的文献求助10
9秒前
柚子发布了新的文献求助10
10秒前
今后应助kingwill采纳,获得30
10秒前
Owen应助hly2333采纳,获得30
11秒前
11秒前
李健的小迷弟应助ttt采纳,获得10
11秒前
邹小静发布了新的文献求助10
11秒前
小辞芙芙发布了新的文献求助30
13秒前
调皮的善若完成签到,获得积分10
14秒前
ding应助机智的若翠采纳,获得10
14秒前
科研通AI6应助海棠采纳,获得10
15秒前
18秒前
18秒前
小马甲应助邹小静采纳,获得10
20秒前
独特忆南完成签到,获得积分10
20秒前
YixiaoWang发布了新的文献求助10
24秒前
顾矜应助云上采纳,获得30
25秒前
深情安青应助1111采纳,获得10
25秒前
27秒前
CodeCraft应助Fran07采纳,获得10
27秒前
西西完成签到 ,获得积分10
27秒前
Jasper应助ii采纳,获得10
27秒前
科研通AI6应助he采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950