亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hypersphere-Based Remote Sensing Cross-Modal Text–Image Retrieval via Curriculum Learning

超球体 计算机科学 人工智能 特征学习 推论 模式识别(心理学) 稳健性(进化) 特征提取 特征(语言学) 嵌入 MNIST数据库 机器学习 深度学习 哲学 化学 基因 生物化学 语言学
作者
W Zhang,Jihao Li,Shuoke Li,Jialiang Chen,Wenkai Zhang,Xin Gao,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:13
标识
DOI:10.1109/tgrs.2023.3318227
摘要

Remote sensing cross-modal text-image retrieval (RSCTIR) is a flexible and human-centered approach to retrieving rich information from different modalities, which has attracted plenty of attention in recent years. It remains challenging because the current methods usually ignore the varying difficulty levels of different sample pairs, stemming from the large image distribution difference and the high text similarity in the remote sensing (RS) field. Therefore, in this paper, we propose an innovative hypersphere-based visual semantic alignment (HVSA) network via curriculum learning. Specifically, we first design an adaptive alignment strategy based on curriculum learning, that aligns RS image-text pairs from easy to hard. Sample pairs with different levels of difficulty are treated unequally, and we obtain a better embedding representation when projecting the features onto the unit hypersphere. Then, to measure the robustness of cross-modal feature alignment on the unit hypersphere, we introduce the feature uniformity strategy. It reduces the occurrence of mismatching cases and improves generalization performance. Finally, we design the key-entity attention (KEA) mechanism to alleviate the problem of information imbalance among different modalities. KEA has the ability to extract information about the key entity which is aligned with textual information. Despite its conciseness, our framework achieves state-of-the-art performance on classical datasets of RSCTIR tasks while enjoying faster inference. The summed recall of HVSA on the RISCD and RSITMD is 120.97 and 198.94, 2.50 and 10.49 points ahead of the current best methods, respectively. Extensive experiments demonstrate the competitiveness of our method. The code has been released at https://github.com/ZhangWeihang99/HVSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
啦啦啦完成签到 ,获得积分20
19秒前
26秒前
37秒前
51秒前
风华正茂完成签到,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
beplayer1完成签到,获得积分10
1分钟前
丘比特应助lulululululu采纳,获得10
2分钟前
小李老博发布了新的文献求助10
2分钟前
YifanWang给呆萌迎曼的求助进行了留言
2分钟前
2分钟前
HS完成签到,获得积分0
2分钟前
2分钟前
2分钟前
小李老博完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
提莫silence完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
优秀的流沙应助轻松小张采纳,获得50
4分钟前
优秀的流沙应助轻松小张采纳,获得50
5分钟前
5分钟前
陈炜smile完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
草木发布了新的文献求助10
6分钟前
6分钟前
lulululululu发布了新的文献求助10
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399733
关于积分的说明 10613455
捐赠科研通 3121992
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928