已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

System-Level Data Management for Endpoint Advanced Persistent Threat Detection: Issues, Challenges and Trends

计算机科学 数据管理 计算机安全 钥匙(锁) 风险分析(工程) 数据科学 审计 架空(工程) 过程管理 数据挖掘 业务 操作系统 会计
作者
Tieming Chen,Chenmou Zheng,Tiantian Zhu,Chunlin Xiong,Jiang Ying,Qixuan Yuan,Wenrui Cheng,Mingqi Lv
出处
期刊:Computers & Security [Elsevier BV]
卷期号:135: 103485-103485
标识
DOI:10.1016/j.cose.2023.103485
摘要

Advanced persistent threat (APT) attacks pose significant security threats to governments and large enterprises. Endpoint detection and response (EDR) methods, which are standard solutions to combat APT attacks, can efficaciously respond to associated security threats by leveraging the semantic richness of provenance graphs and clear causality relations to resist illegal tampering. However, the large number of audit logs produced over time, which provide key supporting information for EDR methods, lead to substantial computational overhead and increased storage costs. Therefore, a robust data management framework must be developed. However, most existing reviews discuss data collection, compression, and storage methods independently. Due to the lack of a comprehensive, structured survey of data management strategies, current data management analyses tend to be separated into individual modules, making it difficult to obtain prompt and precise guidance for higher-level security analysis tasks from these analyses. In this paper, a comprehensive and structured survey of data management strategies based on provenance graphs is conducted, the core ideas of the mainstream approaches to each aspect of data management are summarized, and existing approaches are systematically classified and compared. Then, the problems with individual data management modules are investigated, and potential complementary and collaborative strategies are examined based on the insights and challenges of existing work as a basis for recommending best practices for practical deployment. Finally, an ideal data management framework is described to guide future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江彪完成签到,获得积分10
1秒前
路易斯碱完成签到,获得积分20
2秒前
江知之完成签到 ,获得积分0
2秒前
Zhicheng_Song发布了新的文献求助10
3秒前
7秒前
7秒前
10秒前
he发布了新的文献求助10
11秒前
12秒前
Bing发布了新的文献求助10
13秒前
亭2007完成签到 ,获得积分10
13秒前
14秒前
Hu完成签到,获得积分10
16秒前
完美世界应助yu采纳,获得10
17秒前
shk发布了新的文献求助10
18秒前
19秒前
皮卡丘应助suicone采纳,获得10
21秒前
天真醉波完成签到 ,获得积分10
22秒前
早睡早起身体好完成签到 ,获得积分10
22秒前
小锂飞氘发布了新的文献求助10
24秒前
我是老大应助cure采纳,获得10
26秒前
28秒前
深情安青应助好奇宝宝采纳,获得10
29秒前
32秒前
姬欢欢发布了新的文献求助10
34秒前
含糊的笑卉完成签到 ,获得积分10
34秒前
yu发布了新的文献求助10
36秒前
36秒前
勤奋的热狗完成签到 ,获得积分10
37秒前
37秒前
cure发布了新的文献求助10
39秒前
39秒前
Bing完成签到,获得积分10
41秒前
41秒前
哭泣的赛凤完成签到 ,获得积分10
41秒前
he发布了新的文献求助10
41秒前
bkagyin应助蜜蜜采纳,获得10
42秒前
42秒前
42秒前
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840592
求助须知:如何正确求助?哪些是违规求助? 3382626
关于积分的说明 10525490
捐赠科研通 3102376
什么是DOI,文献DOI怎么找? 1708771
邀请新用户注册赠送积分活动 822670
科研通“疑难数据库(出版商)”最低求助积分说明 773472